ВСЁ ПРО НЕФТЬ И ГАЗ

Комплексный интернет- портал посвещённый нефти и газу

Посмотрите также другие разделы нашего сайта!!!

Литература
много книг по нефти и газу

Программы нефтегазового комплекса

Медиафайлы про нефть

Анекдоты про нефтяников

Знакомства для буровиков

Всё про нефть и газ / Литература(каталог книг)

Басарыгин Ю.М., Булатов А.И., Проселков Ю.М.
Бурение нефтяных и газовых скважин

Глава № 6

Навигация

Аннотация-Оглавление-Предисловие-Список литературы

Глава 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

ВНИМАНИЕ

В текстах книг представленных на сайте в интернет формате очень много ошибок, не читаются рисунки, графики разбиты, это связанно с некачественной перекодировкой конвекторов из PDF формата и HTML.

Если Вам необходимы качественный текст с рисунками и графиками - то скачиваите книги с нашего сайта в формате PDF.

ссылка для скачивания книги или главы в формате PDF находится внизу страницы.

В данной библиотеке представлены книги исключительно для личного ознакомления.
Запрещено любое копирование не для личного использования, а также с целью использования в коммерческих целях.
В случае претензий со стороны авторов книг/издательств обязуемся убрать указанные книги из перечня ознакомительной библиотеки.
Копирование, сохранение на жестком диске или иной способ сохранения произведений осуществляются пользователями на свой риск.

анекдоты

программы

истории

Глава 6

РАЗРУШЕНИЕ ГОРНЫХ ПОРОД

6.1. ОБЩИЕ ПОЛОЖЕНИЯ

Горными породами называются плотные или рыхлые агрегаты, слагающие земную кору. Горные породы состоят из зерен, кристаллов, обломков различных минералов, а также вещества, связывающего (цементирующего) эти частицы, и пор (пустот). Во многих породах в порах содержится вода, которая влияет на взаимосвязь минеральных частиц.

Основными породообразующими минералами являются: группа кварцевых (кварц, кремень, халцедон и др.), силикаты (полевые шпаты, слюда, амфиболы, пироксены и др.), карбонаты (кальцит, доломит), гидрофильные глинистые (каолинит, монтмориллонит и др.) и водорастворимые (гипс, га-лит и др.).

Горные породы по происхождению делятся на магматические, изверженные, осадочные и метаморфические.

Магматические горные породы образуются в результате охлаждения и затвердения магмы. В зависимости от места ее затвердения они делятся на интрузивные, или глубинные, и эффузивные, или излившиеся (изверженные, вулканические). К первым относятся гранит, сиенит, диорит, габбро; ко вторым – диабаз, андезит, базальт и др.

Осадочные горные породы образуются в результате разрушения земной коры: к ним относятся песчаники, сланцы, известняки, торф, лигнит, бурый и каменный угли, антрацит, каменная соль и др. При бурении нефтяных и газовых скважин наиболее часто встречаются породы, состоящие из следующих минералов: глинистых (каолинита, монтмориллонита и др.), сульфатных (гипса, ангидрита, барита), карбонатных (кальцита, доломита), оксидных (кварца и др.). Глинистые минералы – водные алюмосиликаты – характеризуются наличием частиц исключительно малого размера и чешуйчатым строением. Реже встречаются брекчии, галечники, кремни, каменная соль и др.

Метаморфические горные породы образуются в результате изменения внутреннего строения, химического состава и физических свойств пород под влиянием высоких температуры и давления (кварциты, мраморы, слюдяные сланцы и др.).

Классификация пород по А.В. Пустовалову приведена в табл. 6.1, а классификация горных пород по размерам обломков – в табл. 6.2.

По строению горные породы подразделяются на кристаллические, аморфные и обломочные.

Кристаллическими бывают магматические и осадочные породы. Осадочные кристаллические породы образуются в результате выпадения из водных растворов или в результате химических реакций, происходящих в земной коре. К ним относятся соль, гипс, ангидрит, известняки, мел, доло-165

Т а б л и ц а 6.1

Классификация пород по структурным признакам

Структура
Размеры кристаллов, мм
Характеристика

Крупнокристаллическая
>1,0
Кристаллы различаются невооруженным глазом

Среднекристаллическая
0,1–1,0
Кристаллы видны в лупу

Скрытокристаллическая
0,01–0,10
Кристаллы различимы под микроскопом

Пелитоморфная
0,01
Кристаллы и форма различимы только под микроскопом

Т а б л и ц а 6.2

Классификация горных пород по размерам обломков

Размеры обломков, мм
Характер пород и сложение частиц обломков

Рыхлые
Сцементированные
Основные струк-

Угловатые
Окатанные
Угловатые
Окатанные
туры

>1000
Глыбы
Крупные валуны
-
-
-

100–1000
Мелкие глыбы
Валуны


10–100
Щебень
Галечник
Брекчия
Конгломерат
Грубообломочные (псефиты)

2–10
Дресна
Гравий


0,1–2

Песок

Песчаник
Песчаные (псаммиты)

0,01–0,1

Алеврит

Алевролит
Мелкоземлистые (алевриты)

<0,01

Пелит (глина)

Аргиллит
Глинистые (пелиты)

миты и органогенные породы, являющиеся продуктами жизнедеятельности организмов.

Горные породы аморфного строения встречаются реже. К ним относятся естественные стекла-обсидианы, имеющие тонкокристаллическое или неполнокристаллическое строение, например, кремни.

Важную группу составляют обломочные породы, которые образуются в результате выветривания, переноса под действием воды или ветра и дальнейшего их разрушения.

Горные породы могут быть однородными, неоднородными, изотропными и анизотропными.

Горные породы неоднородны по минералогическому составу, распределению зерен в массе породы, пористости и проницаемости, степени уплотненности и трещиноватости. Такая неоднородность играет важную роль в процессах разрушения горной породы, их эффективности, так как неоднородность имеет большое значение при оценке их прочностных свойств.

Изотропные породы обладают одинаковыми свойствами во всех направлениях; анизотропные – неодинаковыми свойствами в разных направлениях. Анизотропия горных пород обусловливается главным образом их слоистостью. Упругие свойства и прочность горных пород резко различаются в зависимости от направления действия сил по отношению к плоскости напластования.

В механике горные породы по характеру связей между частицами подразделяются на три основные группы: скальные (прочные), силы взаимодействия между частицами которых, главным образом, электрические;

166

нескальные (глинистые породы, грунты) с взаимодействием коллоидальных частей, адсорбирующихся на поверхности обломков; сыпучие (раздельно-зернистые).

У прочих пород минеральные частицы связаны цементирующими веществами: кремнистыми (кварцевыми, халцедоновыми), железистыми, из-вестковистыми, глинистыми, мергелистыми, гипсовыми и др. Наиболее прочными являются породы с кремнистой и железистой цементацией (например, кварциты и кремнистые песчаники), наименее прочные – с глинистой и гипсовой.

Сыпучие горные породы представляют собой скопления не связанных друг с другом минеральных частиц (зерен, обломков). Главные минеральные компоненты песков – кварц, полевые шпаты и обломки различных пород и минералов.

6.2. МЕХАНИЧЕСКИЕ И АБРАЗИВНЫЕ СВОЙСТВА ГОРНЫХ ПОРОД

Способность горных пород реагировать на внешние воздействия изменением размеров, формы и целостности относится к механическим свойствам.

Способность горных пород изменять без разрушения форму и размеры в результате направленного на них силового воздействия называется деформируемостью.

Прочность горных пород – это способность их в определенных условиях воспринимать силовые воздействия без разрушения.

Реальная (техническая) прочность отличается от теоретической, под которой понимается прочность связи между элементарными частицами, слагающими идеальную кристаллическую решетку. Например, одностороннее растяжение ионного кристалла (по Г.С. Жданову) составляет 3000 МПа. Для реальных тел отношение теоретической прочности к технической достигает больших значений: для железа – 4500, цинка – 2000, хлористого натрия – 600, кварца – 90.

Твердость пород – это их способность сопротивляться внедрению в них постороннего тела.

Горные породы могут деформироваться в пределах упругости и претерпевать пластические (остаточные) деформации.

Способность горных пород изменять форму и объем под влиянием силовых воздействий и полностью восстанавливать первоначальное состояние после устранения воздействий называется упругостью.

Способность горных пород изменять форму и объем под влиянием силовых воздействий и сохранять остаточные деформации после устранения воздействий называется пластичностью.

Горные породы при их нагружении характеризуются проявлением упругой и пластической деформаций, так как не являются идеально упругими или идеально пластическими телами.

Минералы в большинстве случаев деформируются как упругохрупкие тела: их разрушение характеризуется моментом, когда напряжения достигают предела упругости; деформации следуют закону Гука. Повышение температуры и всестороннего давления может привести к тому, что минералы будут деформироваться как упругопластические тела.

Горные породы деформируются, не следуя закону Гука: так как они

167

имеют дисперсное строение, их связь между напряжением и деформацией носит сложный характер.

Упругое поведение тела, в том числе горных пород, может быть охарактеризовано модулем Юнга (упругости) Е, коэффициентом Пуассона ц или модулем сдвига G. Иногда необходимо знать модуль объемного сжатия к. Указанные константы изотропного тела взаимно связаны:

Е = 2G(1 + ц);

(6.1) Е = 3к(1 – ц).

Для горных пород, которые относятся к анизотропным телам, константы ?иц должны быть заданы в виде кривых зависимости от направления.

Модуль упругости определяется рядом факторов. Различают модуль упругости Е, возникающий при однократном нагружении; модуль упругости Ен, получаемый в результате исключения остаточных деформаций методом многократной нагрузки и разгрузки; динамический модуль упругости Е, вычисляемый по скорости распространения упругих волн. Они различны: Е < Ен < ?д.

Модуль упругости, полученный при испытании образцов горных пород для различных видов деформации при растяжении Ер, изгибе Еи и сжатии Есж, неодинаков: Ер < Ен < Есж. Количественное соотношение примерно следующее: Ен/Ер = 1,1 -т-3; Еи/Есж = 0,25-0,35.

Породы одного и того же минералогического состава, но разной степени уплотненности имеют разные модули упругости. Если породы находятся под все увеличивающимся напряжением, то они имеют повышенные значения Е.

Модуль упругости горных пород по мере увеличения глубины их залегания возрастает. Наибольшее влияние на модуль упругости оказывают минералогический состав, структура, текстура, условия залегания, природа вещества, заполняющего поровые пространства, и др.

Повышение песчанистости приводит к увеличению Е породы. Его значения определяются главным образом модулем упругости основного породообразующего минерала, но ?сжп < ?сжм.

Ниже приведены модули упругости при сжатии некоторых минералов:

Минерал.............................................. Кварц Кальцит Гипс Галит

^сж.м'106, МПа................................. 7,9–10 5,8–9,0 1,2–1,5 2,4–2,6

По мере увеличения карбонатности осадочных горных пород модуль упругости возрастает. При прочих равных условиях мелкозернистые породы имеют более высокий модуль Юнга, чем крупнозернистые.

Ниже представлены значения ?сж п для горных пород:

Порода........................................................... Глинистый сланец Известняк Доломит

?сж.п-10–6, МПа............................................. 1,5–2,5 1,3–2,5 2,1–16,5

Порода........................................................... Мрамор Песчаник Кварцит

?сж.п-10–6, МПа............................................. 3,9–9,2 3,3–7,8 7,5–10,0

Модуль упругости горных пород с равномерно распределенной пористостью закономерно понижается с повышением пористости. Породы одинаковой пористости, но разного минералогического состава (кварциты, граниты, мраморы) в пределах нагрузок от 10 до 100 МПа имеют примерно одинаковое значение Е.

168

По Л.А. Шрейнеру, для целей бурения модуль упругости можно определить по формуле

P(1 - ц )

Eш =-------------,

где Еш – модуль упругости породы при вдавливании цилиндрического штампа, Па; Р – нагрузка на штамп, соответствующая деформации, Н; ц – коэффициент Пуассона; dш – диаметр штампа, м; |уп – упругая деформация, м.

Модуль упругости Еш, кроме того, зависит от пористости пород, минералогического состава, направления действия деформирующих сил по отношению к слоистости породы и т.д.

Если Е|| – модуль упругости параллельно, а Е± – модуль упругости перпендикулярно к напластованию, то отношение Е|| / Е± характеризует степень упругой анизотропии горной породы. Для глинистых пород оно доходит до 2, для песчаников – до 1,2, для алевролитов – до 1,4.

С увеличением влажности горных пород модуль упругости существенно снижается. По Л.А. Шрейнеру, горные породы в зависимости от модуля упругости подразделяются на восемь категорий.

Коэффициент Пуассона ц для горных пород – величина, изменяющаяся в диапазоне 0,10–0,45. Ниже приведены значения ц для горных пород:

Порода................................ Глины пластичные Глины плотные Глинистые сланцы

|х............................................ 0,38–0,45 0,25–0,35 0,10–0,20

Порода................................ Известняки Песчаники Каменная соль Гранит

|х............................................ 0,28–0,33 0,30–0,35 0,44 0,26–0,2

Коэффициент Пуассона уменьшается с увеличением деформирующей нагрузки: для известняка изменение нагрузки в пределах 10–250–500 Н приводит к уменьшению ц до 0,28.

Изучение зависимости ц от направления приложения нагрузки (параллельное и перпендикулярное к напластованию) показывает, что щ > \х±.

Л.А. Шрейнер и другие показали, что коэффициент Пуассона зависит от метода испытаний: при динамических испытаниях он меньше, чем при статических, и в некоторых случаях во много раз: для доломитов и известняков, например, в 1,7–2,1 раза.

Изучение процессов разрушения горных пород и исследование устойчивости горной выработки часто требуют знания их сжимаемости р.

Горные породы под действием всестороннего давления уменьшают свой объем следующим образом: для большинства горных пород р = = 10 6-ь10 7, т.е. объем горных пород при увеличении давления на 0,1 МПа уменьшается на несколько миллионных или даже десятимиллионных долей их первоначального объема. С увеличением давления коэффициент объемного сжатия горных пород уменьшается. Например, для известняка значение р при небольших давлениях высоко: р = (2,3-ь2,7)-10–6, а при давлениях выше 200 МПа оно достигает 1,39-10 6, т.е. значений р для кальцита, остающегося несжимаемым вплоть до давления 1000 МПа.

Горные породы принято делить на хрупкие и пластичные при обычных условиях. Изменение условий испытания перемещает границу между хрупкостью в ту или иную сторону. По В.С. Федорову, хрупкость, а значит, и

169

пластичность, следует рассматривать как состояние тела, а отнюдь не как свойство материала. В понятие состояния горных пород входят: структура, дефекты и искажения, относящиеся к самим зернам (решеткам), их поверхности и к веществу, связывающему зерна; температура и время действия сил и их значение. При определенных сочетаниях этих факторов горные породы могут вести себя как хрупкие или как пластичные тела. Л.А. Шрейнер с сотрудниками на основании экспериментов при вдавливании штампа в образцы горных пород классифицировал их на упругохруп-кие, упругопластичные и не дающие общего хрупкого разрушения. При этом были построены и характерные кривые деформации.

При построении и анализе диаграммы (рис. 6.1) деформации в координатах Р – | (соответственно нагрузка в ньютонах и деформация в микрометрах) тангенсы углов наклона прямых АВ (а) и ВС (а1) характеризуют упрочаемость породы при пластическом деформировании: точка А пересечения линий ОА (в упругой области) и АВ (в пластической области) дает значение нагрузки Р0, по которой можно судить о пределе текучести.

Л.А. Шрейнер с сотрудниками под мерой пластичности понимают некоторый коэффициент kп, получаемый как отношение общей работы, затраченной до разрушения (площадь ОАВСД), к работе упругих деформаций (площадь ОРЕ). Точка С соответствует значению нагрузки Р, при которой наступает общее разрушение образца горной породы под штампом.

Для упругохрупких пород kп принимается равным единице. Породы осадочной толщины к этой категории практически не относятся. Для этих пород kп удовлетворяется неравенством 1 < kп < 6. К ним относятся известняки, доломиты, песчаники и другие породы.

Л.А. Шрейнер исследовал породы, для которых kп > 6, отнес их к классу пород, «не дающих общего хрупкого разрушения». К этому классу относятся глинистые сланцы. Глины характеризует k п, равный практически бесконечности.

Пластические свойства горных пород существенно изменяются с изменением их минералогического состава и пористости. Например, при постоянной пористости kп горной породы увеличивается по мере уменьшения ее карбонатности или глинистости. Породы с постоянной карбонатностью показывают увеличение kп с ростом пористости.

Прочность – одно из основных свойств горных пород. Ее можно определить как сопротивление тел механическому разрушению. Характер деформации играет существенную роль. Наиболее часто используются данные по пределам прочности при разрыве Rр (растяжение), изгибе Rи, сжатии Rсж, скалывании xs (сдвиге, срезе).

Рис. 6.1. Диаграмма деформации при вдавливании штампа, построенная в координатах Р и ?: а – в упругохрупкую породу; б – в упругопластичную породу

170

Понятие о твердости менее определенно, и применительно к внедрению долота, условно состоящего из своеобразных клиньев («штампов»), может быть сформулировано как сопротивляемость горной породы внедрению в него штампа. Это есть прочность тела при вдавливании в него другого тела. Между показателями прочности и твердости существует корреляционная связь. Прочность горных пород зависит от ряда факторов, главные из которых – минералогический состав, размер и форма зерен кристаллов породы, структура, текстура, тип цемента, количественное соотношение между цементом и материалом породы, пористость и слоистость, уплотненность, перемятость водонасыщенность и некоторые другие. Значительно влияют на прочность вид деформации, масштабный фактор, скорость приложения нагрузки и др. Рассмотрим некоторые из этих факторов.

Прочность материалов определяется силами сцепления и внутреннего трения. Между прочностью горных пород и их сцеплением существует прямая связь. Интенсивность сцепления С можно определить через предел прочности при сжатии ,Ксж и угол внутреннего трения ср:

„ Rсж (1 - sin ф) 2 sin ф

или через предел прочности на разрыв Rр:

„ Rp (1 + sin ф)

С =------------.

2 sin ф

Интенсивность сцепления численно почти равна пределу прочности при разрыве: С т Rр.

По сечению образца горной породы прочность не везде одинакова: ее значения максимальны при разрушении зерна породы, меньше – в местах связи зерен и равны нулю в порах, трещинах.

Интенсивность сцепления часто определяется из условия разрушения на сдвиг, что обусловлено силами сцепления и силами трения. В общем случае сдвиг происходит не по плоскости, а по некоторой зоне толщиной, превышающей размер частиц породы. Силу внутреннего трения f принято оценивать коэффициентом или углом внутреннего трения: tg ср = f; ср = = 2у0 – 90°, где у0 – определяемый экспериментальным путем угол некоторой площадки с в образце породы к горизонту, на которой при приложении нагрузки устанавливается равновесие сил (рис. 6.2).

Главные породообразующие минералы обладают различной прочностью: наивысшая прочность, достигающая 500 МПа, у кварца. При прочих равных условиях во всех осадочных горных породах с увеличением количества растворенного кварца прочность возрастает. Прочность кварцитов и кремния достигает 300–500 МПа, у карбонатных пород она меньше. Так, прочность основных породоразрушаю-щих минералов кальцита и доломита составляет соответственно 160 и 200 МПа. Прочность обломочных сцементированных пород определяется минеральным составом цементирующего вещества. Наиболее слабые места этих

Рис. 6.2. Схема разрушения образца породы под действием сжимающих усилий

171

конгломератов находятся на поверхностях контакта обломочного и цементирующего материалов.

По В.С. Федорову, прочность на разрыв горных пород выше, если зерна, ее составляющие, меньше. Прочность на скалывание слабо зависит от размера зерен. Разнозернистые горные породы характеризуются повышенной прочностью по сравнению с теми, у которых размеры зерен примерно одинаковы.

Как правило, горные породы, имеющие «цемент» соприкосновения менее прочны, чем породы, имеющие базальтовый цемент и цемент пор. При прочности цементирующего вещества ниже прочности классических зерен породы с базальтовым цементом оказываются более прочными, чем породы с цементом пор.

Прочность пород с низкой пористостью (0,5–2,0 %) при сжатии существенно зависит от формы и характера взаимного расположения зерен. Так, у сланцев она изменяется от 69,2 до 247,3 МПа.

Еще больше эти факторы влияют на известняки. Породы, в составе которых в значительном количестве содержатся минералы табличного или пластичного габитуса, характеризуются изменчивостью прочности в различных направлениях.

Увлажнение горных пород приводит к снижению их прочности: для глинистых пород падение прочности весьма резкое; скальные породы снижают прочность значительно меньше – до 20–30 %. Увлажнение до 16– 18 % повышает, а водонасыщение резко снижает прочность песков. Насыщение пород нефтью понижает их прочность.

Прочность при сжатии горных пород возрастает с увеличением уплотнения по линейному закону. В.С. Федоров считает, что прочность пород увеличивается от свода к крыльям с ростом глубины залегания.

Существенно влияет на прочность горных пород вид деформации. При прочих равных условиях пределы прочности при растяжении Rр, скалывании Rс, изгибе Rи и одноосном сжатии ,Ксж располагаются в следующем порядке: Rр < Rс < Rи < Rсж.

Cоотношения этих величин для разных пород ориентировочно выражаются следующими значениями:

=-г-; с = -f-; и = 0,10 -г- 0,32.

Ксж 20 35 Ксж 6 13 Ксж

При испытании образцов горных пород четко выявляется закономерность: при увеличении линейных размеров кубиков от 2 до 10 см наблюдается резкое увеличение предела прочности на сжатие. У образцов размером от 10 до 20 см ,Ксж возрастает, но менее выражено, приближаясь к некоторому значению. Прочность зерен закономерно уменьшается с увеличением размера зерен. В.С. Федоров построил характерную кривую, дающую наглядное представление о влиянии линейных размеров (масштабный фактор) на прочность минералов и образцов горных пород (кубиков) при одноосном сжатии (рис. 6.3).

Результаты испытаний горных пород на одноосное сжатие существенно зависят от скорости приложения разрушающих усилий. Так, при изменении скорости нарастания напряжения от 1,9 до 4,0 МПа/с прочность испытуемых пород возрастала от 154,4 до 174,5 МПа. По В.С. Федорову, при «мгновенном» действии разрушающих сил прочность известняков, песча-

172

Рис. 6.3. Влияние линейных размеров (масштабный фактор) на прочность минералов и горных пород при одноосном сжатии:

1 – зона зерен минералов; 2 – зона крупных образцов (кубики)

ников, глинистых сланцев увеличивается на 10–15 % по сравнению с замедленным приложением сил. Аналогичная закономерность прослеживается и в случае испытания других горных пород. Скоростной эффект больше влияет на пластичные породы, меньше – на хрупкие.

Горные породы разрушаются и при нагрузках, которые меньше критических, но действуют в течение продолжительного времени. Временная прочность пород зависит от наличия или отсутствия дефектов в образцах и механизмах разрушения.

Твердость горных пород является одним из свойств, представляющих интерес с позиции механики разрушения. Существует несколько способов определения твердости горных пород. Наиболее известный – по шкале Мооса. Твердость породы определяется направлением (оставлением риски) с помощью указанных минералов. Номер минерала, который первым наносит риску на испытуемом материале, определяет его цифровую характеристику.

Другой возможный метод определения твердости горных пород – динамический метод Шора. Л.А. Шрейнер установил зависимость между твердостью минералов шкалы Мооса, измеряемой прибором Кнупа, РКн и коэффициентом отскока к на приборе Шора: РКн = 18(1,054)100?2.

В последние годы получил распространение метод определения твердости горных пород, разработанный Л.А. Шрейнером и его сотрудниками. Сущность метода заключается в том, что в плоскую, хорошо отшлифованную поверхность испытуемого тела вдавливают пуансон (штамп), имеющий плоское основание и известный диаметр; при этом измеряют нагрузки, деформации до разрушения, параметры зоны разрушения, а также вычисляют показатели механических свойств.

Деформацию измеряют с помощью индикатора с точностью отсчетов от 0,001 до 0,002 мм в зависимости от условий испытания. Нагрузка на пуансон прилагается ступенями, ее повышают через малые интервалы, внутри каждого из которых деформация должна пройти до конца.

Затем строят график зависимости деформаций от напряжений – кривую деформации при вдавливании штампа (см. рис. 6.1).

Несколько условно кривую деформации делят на участок ОА – область упругой деформации и участок АВ – область пластической деформации с последующим хрупким разрушением. При испытании хрупких пород участок АВ будет отсутствовать. Пластические породы не имеют хрупкого разрушения. В этом случае за меру твердости принимается предел текучести, чему соответствует точка Р0 на ординате Р.

173

Нагрузка Р0, отнесенная к площади штампа, представляет собой предел текучести (Па): Рт = P0/S.

Упругие свойства пород могут с некоторой степенью приближения характеризоваться наклоном прямой ОА к оси абсцисс. Приближенное значение модуля упругости горной породы при нагрузке, соответствующей любой точке прямой ОА, может быть определено из зависимости Е = = 0,94Р/2ае, где е – деформация, соответствующая нагрузке Р; а – радиус штампа.

Коэффициент пластичности принимается равным отношению общей работы, затрачиваемой для хрупкого разрушения (площадь OABCD), к работе упругих сил (площадь OEL).

Для горных пород, которые не дают общего хрупкого разрушения (пластичные породы), коэффициент пластичности принимается условно равным бесконечности.

В табл. 6.3 приводятся механические свойства некоторых горных по-

род.

По Л.А. Шрейнеру, породы делятся на три группы (I, II, III):

1 0,5–1,0
2 1,0–2,5
3 2,5–5,0
4 5,0–10

5 10–15
6 15–20
7 20–30
8 30–40

9 40–50
10 50–60
11 60–70
12 >70

Группа I

категория ......................................................

твердость, МПа ...........................................

Группа II

категория ......................................................

твердость, МПа ...........................................

Группа III

категория ......................................................

твердость, МПа ...........................................

К первой группе относятся породы, не дающие общего хрупкого разрушения (слабосцементированные пески, мергели с прослоями песка, суглинки, известняк-ракушечник, мергели и др.); ко второй – упругопластич-ные породы (сланцы, доломитизированные известняки, доломиты, кварце-во-карбонатные и др.); к третьей – упругохрупкие, как правило, изверженные и метаморфические породы. Из осадочных пород к последней группе относятся кварциты, кремни и окремнелые карбонаты. В основном эта шкала совпадает с 12-балльной шкалой геологоразведочного бурения. Многолетний опыт бурения определяет ее практическую целесообразность.

Подавляющее большинство горных пород, слагающих нефтяные и газовые месторождения, относятся к восьми категориям.

По пластичности горные породы Л.А. Шрейнер разделил на шесть категорий. К первой относятся упругохрупкие; ко второй, третьей, четвертой и пятой – упругопластичные и к шестой – не дающие хрупкого разруше-

Т а б л и ц а 6.3

Механические свойства горных пород (по Л.А. Шрейнеру)

Горные породы
Твердость, МПа
Коэффициент пластичности
Модуль упругости ?-10-1, МПа

Глины
Аргиллиты
Мергели
Песчаники кварцевые
Известяки
Гипсы
Кремнистые породы
100–250
250–500
50–250
250–2500
1000–2000
250-500
>5000
>1-3 >1-3
1-3 >1-4
2-6 >1-6
1–3
0,25–0,5 0,5-1,0
<0,5 0,5–5,0
1–5 0,5-2,5
>10

174

ния и упругопластичные породы с коэффициентом пластичности кп > 6, так как они по своему поведению при разрушении близки к породам, не дающим хрупкого разрушения.

По методике Л.А. Шрейнера весьма трудно отличить высокопластичную породу от высокопористой. Пластичность пород этих видов условно принимается равной бесконечности, когда у них вполне определенный коэффициент пластичности.

Методика Л.А. Шрейнера весьма трудоемкая, поэтому используется только при научных исследованиях, – из-за сложности оборудования и требований высокой квалификации операторов и специалистов в производственных условиях она пока не применяется.

Твердость горных пород, определенная по описанной методике, значительно выше предела прочности на сжатие.

Поскольку прочность и твердость горных пород взаимосвязаны, на последнюю влияют те же факторы и в том же направлении, что и на твердость. Твердость горных пород в определяющей степени зависит от минералогического состава и существенно зависит от содержания в них кварца и полевых шпатов. Присутствие кварца влияет на твердость глинистых пород некарбонатного типа, меньше – на твердость глинистых пород и чистых мергелей. Твердость в этой группе пород изменяется линейно, пропорционально количеству присутствующего кварца. Твердость глинисто-карбонатных пород существенно зависит от карбонатной составляющей, а песчаников и алевролитов – от типа цементирующего материала. При прочих равных условиях твердость повышается от типа цемента (слева направо): глинистый ->¦ гидрослюдисто-глинистый ->¦ карбонатный ->¦ базальтовый.

Существенно зависит твердость от структуры породы и ее пористости. Некоторые факторы влияют на ,Ксж и твердость неодинаково и в противоположных направлениях: например, геотектонический фактор – предел прочности при сжатии R± перпендикулярно к напластованию больше предела прочности Щ параллельно напластованию (R± > Щ), тогда как для твердости результаты прямо противоположны, причем Щ > R± = 1,1-5-1,8.

Из технико-технологических факторов на твердость горных пород больше всего влияют факторы: масштабный, формы и скоростной. Чем выше твердость горной породы, тем отчетливее влияние масштабного фактора, чем больше размеры площади штампа, тем выше твердость (до определенного размера).

Твердость имеет наименьшие значения при внедрении заостренных наконечников (конусы, клинья) и наибольшие – при плоских торцах при прочих равных условиях. При мгновенном приложении нагрузки твердость горной породы выше, чем при медленном вдавливании, причем эффект в данном случае больший, чем при определении Rсж.

Твердость должны определять по стандартной, отработанной методике при проверенных и установленных технико-технологических факторах, которые могут дать несопоставимые результаты (форма, скорость нагруже-ния, размеры образца и штампа, угол внедрения штампа в образец, плоскость поверхности и др.).

При оценке рабочего инструмента для разрушения горных пород существенную роль играет характер разрушения пород различного класса. Для упругохрупких и упругопластичных пород зоны разрушения гораздо больше зоны контакта породы и штампа; для пород, не дающих хрупкого

175

Рис. 6.4. Схемы разрушения пород при вдавливании штампа:

a, a – для пород упругохрупких и упругопластичных; в – для пород, не дающих общего хрупкого разрушения

разрушения, размеры разрушения и контакта одинаковы (рис. 6.4). Углубление в последнем случае больше.

Отношение глубины погружения штампа после разрушения породы 5 к ее деформации Е (упругой и пластичной) до разрушения является показателем, по которому породы делятся на различные классы. Для упруго-хрупких пород отошение д/Е > 5,0, для упругопластичных оно равно 2,5– 5,0 и для пород, не дающих хрупкого разрушения, равно единице.

Для оценки сопротивляемости горных пород разрушению при бурении пользуются также понятием критического напряжения акр. По В.С. Федорову, критическое напряжение – это отношение нагрузки на долото Рд, при которой начинается активное объемное разрушение породы, к первоначальной площади контакта. Величина акр характеризует сопротивление породы проникновению в нее рабочих элементов долота и определяется из данных бурения.

Эта величина и твердость по штампу (по Л.А. Шрейнеру) имеют одинаковую физическую сущность, и между ними устанавливается корреляционная связь. Твердость по Л.А. Шрейнеру определять проще, чем акр, поэтому ее использование более предпочтительно.

Абразивная способность горных пород – это способность изнашивать разрушающий их инструмент. Это понятие связано с понятием о внешнем трении и износе. Абразивная способность горных пород и механизм ее проявления пока еще недостаточно изучены.

Суммируя отдельные, порой субъективные и противоречивые данные, В.С. Федоров выделил основные положения абразивной способности горных пород применительно к бурению, которые приведены ниже.

Главная причина абразивного износа твердых тел – неровности на соприкасающихся поверхностях. Поверхности касаются только в точках контакта. В случае не очень больших давлений на соприкасающихся по-

176

верхностях площадь истинного контакта составляет лишь 2-10–5 –2-10–4 части полной площади поверхности, т.е. весьма малую ее часть. Соприкасающиеся поверхности находятся под действием точечных нагружений. Число мест контакта значительно, но величина площади их соприкосновения мала. В точках контакта поверхность подвергается одновременному действию усилий, направленных вдоль и нормально к поверхности. Тогда процесс абразивного износа определяется большим числом отдельных царапаний и сколов, вызывающих непрерывное соскабливание с рабочих поверхностей разрушающего инструмента стружек и соскобов.

В общем случае абразивный износ – процесс весьма сложный. В одних участках обеспечивается механическое сцепление (царапание), и здесь сопротивление трения обусловливается прочностью на срез взаимно внедрявшихся элементов поверхности. В других участках обеспечивается молекулярное сцепление, и сопротивление разрушению связано с преодолением молекулярных сил. Практически при бурении молекулярными силами можно пренебречь.

Объемный износ V может быть найден из выражения V = 8\xvPfs, где 5 – коэффициент износа; \хv – кинетический коэффициент внешнего трения; Р – твердость горной породы; f – площадь соприкосновения трущихся поверхностей; s – путь трения.

Тогда для одного и того же изнашивающегося материала при прочих равных условиях при соприкосновении с разными породами (в пределах определенного класса) можно записать: V1/V2 = \л.1Р/\Ji2P2, где \i1, P1 – коэффициент внешнего трения и твердость одной породы; \i2, P2 – то же, второй породы.

Следовательно, для бурения мерой относительной абразивной способности горной породы может служить произведение коэффициента внешнего трения и твердости. Тогда факторами, определяющими абразивную способность горных пород, являются факторы, влияющие на ее твердость, и кинетический коэффициент внешнего трения. На последний существенное влияние оказывают твердость горных пород, размер и форма зерен, слагающих породу, нормальное давление, скорость скольжения, среда, в которой находятся трущиеся поверхности, температура и некоторые другие факторы.

Коэффициент трения о породу тем больше, чем выше ее твердость при одинаковом минералогическом и зерновом составе, что объясняется затрудненным выламыванием зерен из породы повышенной твердости, а также тем, что разрушающий инструмент царапается более интенсивно.

По тем же причинам \хv выше при трении о мелкозернистые породы с остроконечными и ребристыми зернами, чем при трении о крупнозернистые породы с окатанными зернами.

При трении инструмента о породу (нешлифованную) коэффициент \хv является возрастающей функцией нормального давления вплоть до момента, когда это давление не станет равным твердости породы. В дальнейшем |av остается примерно постоянным.

Для расчетов при бурении в реальных породах \хv следует определять при нормальных давлениях на трущихся поверхностях. Установлено, что при росте скорости скольжения коэффициент трения изменяется, имея максимум; при увеличении нормального давления максимум ^ смещается в сторону меньших скоростей. При сухой чистой поверхности горных пород коэффициент трения имеет наивысшие значения для данной пары. Смо-

177

ченная водой порода для той же пары имеет более низкие значения, которые еще более снижаются при покрытии поверхности горной породы буровым раствором.

Температура выше 200 °С способствует повышению коэффициента трения. В случае применения твердосплавных разрушающих инструментов влияние температуры начинает проявляться при более высоких ее значениях.

6.3. ВЛИЯНИЕ ВСЕСТОРОННЕГО ДАВЛЕНИЯ, ТЕМПЕРАТУРЫ И ВОДОНАСЫЩЕНИЯ НА НЕКОТОРЫЕ СВОЙСТВА ГОРНЫХ ПОРОД

Гравитационные силы, тектонические напряжения, давления насыщающих породу флюидов вызывают напряженное состояние, испытываемое горными породами в земной коре и называемое горным давлением рг, которые принято определять в зависимости от объемной массы р0 вышележащих пород и глубины рассматриваемой точки z, т.е. рг = p0gz.

Давление, обусловленное сопротивлением массива радиальной деформации выделенного объема породы, называется боковым давлением рб и зависит от горного давления рг:

ц

Рб = -------Рг,

1-ц

где ц – коэффициент Пуассона.

Наконец, флюиды, находящиеся в пластах под определенным давлением, в особенности вода, весьма серьезно влияют на поведение горных пород и их свойства в конкретных условиях. Наиболее полно изучено влияние всестороннего сжатия на изменение поведения горных пород, хотя при этом возникают значительные сложности.

В.В. Булатов на основании большого количества экспериментальных работ пришел к следующим выводам.

1. Твердость глинисто-карбонатных пород существенно зависит от всестороннего сжатия. Чем меньше твердость, тем заметнее влияние на нее всестороннего давления. Особенно интенсивен рост твердости при давлении 70–80 МПа.

Для песчано-алевролитовых горных пород закономерности изменения твердости при повышении всестороннего давления те же, но наибольшее повышение твердости пород наблюдается при давлении до 30 и выше 80 МПа.

2. Пластические свойства глинисто-карбонатных пород изменяются в условиях всестороннего давления следующим образом.

С повышением всестороннего давления предел текучести и коэффициент пластичности пород увеличиваются, при этом темп «упрочения» пород под штампом возрастает. При определенном давлении коэффициент пластичности к для каждой породы скачком изменяется до к = оо. Чем выше коэффициент пластичности породы, тем заметнее влияние давления на рост последнего. С увеличением давления темп роста коэффициента пластичности снижается.

В.В. Булатовым установлена зависимость механических свойств гор-

178

ных пород, определенных методом вдавливания, от совместного влияния давления и температуры. Он показал, что известняки верхнего мела (Чечня и Ингушетия), находящиеся в условиях высокой температуры, с ростом давления переходят в категорию пород, не дающих хрупкого разрушения.

С увеличением давления предел текучести пород при температуре 150 °С возрастает. Темп роста предела текучести превышает увеличение давления. Предел текучести и твердость пород при постоянном давлении (30 МПа) уменьшаются с ростом температуры. При постоянной температуре с ростом давления условный коэффициент пластичности горных пород увеличивается: наиболее интенсивный рост его прослеживается до давления 20–25 МПа. При постоянном давлении с ростом температуры коэффициент пластичности понижается, особенно интенсивно при увеличении температуры до 100 °С.

Весьма своеобразно влияние жидкости, особенно воды, на поведение горных пород при воздействии всестороннего сжатия.

Б.В. Байдюк и Л.А. Шрейнер изучили влияние напряженного состояния и влажности на устойчивость глинистых пород в скважинах. Они пришли к выводу, что пластичные глинистые породы могут сохранять устойчивость до значительных глубин даже при небольшой плотности жидкости, если не происходит их увлажнение, которое существенно снижает прочностные свойства. Поэтому резко уменьшается глубина устойчивого состояния ствола, сложенного из этих глин.

Общая закономерность для всех горных пород – уменьшение прочности при насыщении их водой.

Вода, и особенно вода с растворенными в ней поверхностно-активными веществами (ПАВ), существенно понижает (эффект П.А. Ребиндера) поверхностную энергию горной породы (чем выше избыточная поверхностная энергия, тем больше прочность породы), тем самым уменьшая ее прочность и твердость.

Жидкость, находящаяся в порах горной породы, также оказывает влияние на ее свойства. В случае неизолированного образца (массива) горной породы при создании гидравлического давления в поры породы будет проникать жидкость, создающая давление. В этом случае на скелет породы действует разность между внешним гидравлическим и поровым давлениями. Если разность мала, что обычно наблюдается, то механические свойства породы при создании всестороннего гидравлического сжатия заметно не изменяются. Если при всестороннем гидравлическом сжатии прочность породы повышается, то поровое давление способствует снижению предела текучести и прочности.

Известно, что горные породы в условиях их разрушения на забое скважины не находятся в объемно-напряженном состоянии в пределах зоны разрушения и предразрушения (А.Ф. Афанасьев). При наличии капиллярного давления, равного 200–250 МПа, жидкость проникает в трещиноватые участки забоя, образуемые долотом, и устраняет всестороннее давление в области разрушения. В условиях забоя скважины в процессе разрушения порода не изолирована от воздействия бурового раствора и его фильтрата. Следовательно, в процессе разрушения породы забоя жидкость бурового раствора фильтруется сквозь забой, что способствует уравновешиванию гидростатического давления в пределах глубины проникновения жидкости.

Прочностные и пластические свойства горных пород при вдавливании

179

штампа в условиях всестороннего давления проявляются эффективнее, если скорость фильтрации жидкости через верхний торец образца мала по сравнению со скоростью вдавливания штампа. И наоборот, если фильтрация жидкости опережает внедрение штампа, происходит частичное (или полное) уравновешивание гидростатического давления. При полном уравновешивании гидростатического давления на поверхности образца и на глубине внедрения штампа эффект упрочнения полностью снимается; порода деформируется как в атмосферных условиях.

В низкопроницаемых горных породах наиболее активная фильтрация жидкости через поры (в отличие от закона Дарси) начинается только по достижении некоторого всестороннего давления, зависящего от проницаемости пород (при высокопроницаемых – от вязкости бурового раствора). Такое увеличение давления способствует упрочнению пород. С превышением этого значения давление в порах уравновешивается, и эффект всестороннего давления снимается (В.Ф. Целовальников и др.).

6.4. ОСНОВНЫЕ ЗАКОНОМЕРНОСТИ РАЗРУШЕНИЯ ГОРНЫХ ПОРОД

Горные породы разрушаются вследствие отрыва (от нормальных напряжений) или сдвига, скалывания, среза (от касательных напряжений). При сжатии порода разрушается преимущественно на скалывание, при растяжении – на отрыв. Разрушение горных пород – процесс сложный, и разрушения на скалывание и отрыв сопровождают друг друга.

Процесс разрушения требует времени и происходит постепенно, но с различной скоростью. Разрушение обычно проходит по контактным поверхностям отдельных минеральных зерен. Продолжительность разрушения для одной и той же породы при прочих равных условиях определяется нагрузкой, температурой, активностью среды, напряженным состоянием и т.д.

При бурении скважин разрушение горных пород долотами различного типа может быть поверхностным и объемным. Первый вид разрушения обычно неэффективен – он сводится к дроблению, истиранию, выламыванию из массива и проталкиванию в направлении движения инструмента частиц породы. Не вдаваясь в более подробное рассмотрение процесса, связанного с возникновением своеобразного клина из выломанных и передвигаемых частиц, создающих распор и способствующих разрушению породы, а также механизма их истирания, остановимся на объемном разрушении горных пород.

Очевидно, разбуривание породы долотом с известным приближением можно рассматривать как процесс вдавливания в породу наконечника (штампа) с плоским и криволинейным основаниями.

Переход от меньшей степени нагрузки на штамп к большей изменяет скорость деформации. При этом различаются три фазы напряженного состояния породы под штампом: уплотнение (затухание деформации), предельное равновесие (разрывы и сдвиги) и разрушение.

В первой фазе скорость деформации уменьшается до нуля; в скальных породах при этом деформации являются упругими; в глинистых пластичных породах первая фаза – это фаза уплотнения. При разрушении горных пород первая фаза характеризуется поверхностным разрушением.

180

Во второй фазе скорость деформации не затухает, и при некоторой нагрузке деформация ползучести становится постоянной. Внешним проявлением второй фазы деформации, по В.С. Федорову, являются появление скалывания по контуру давления в хрупких породах (появление клинообразного углубления) или пластические деформации у пластических пород. При всестороннем сжатии (под штампом сферической формы) порода характеризуется физико-механической неоднородностью. Любой дефект – вероятный очаг концентрации перенапряжений, вызывающий рост трещин.

При увеличении напряжения и росте сети трещин в породе возникают поверхности следующих друг за другом сдвигов, характеризующих деформации. Происходит объемное разрушение породы, причем в реальных горных породах, характеризующихся наличием дефектов, процесс разрушения идет и при нагрузках более низких, чем критические, но медленно. Длительность второй фазы определяется нагрузкой и условиями, в которых происходит процесс разрушения (температура, активность и т.д.).

Третья фаза, по В.С. Федорову, – это фаза прогрессивного роста деформаций, фаза объемного разрушения. Для скальных пород она длится доли секунды.

Три фазы разрушения составляют полный цикл разрушения горной породы. Ярко выраженный скачкообразный характер наблюдается у хрупких прочных пород. У хрупких, но менее прочных пород цикличность повторяется, но скачкообразный характер не столь ярко выражен. Малопрочным породам свойствен еще более плавный характер разрушения. При разрушении пластических глин скачкообразности вообще не наблюдается.

При ударном воздействии горные породы могут разрушаться при напряжениях меньше критических, соответствующих пределу прочности. При некотором значении силы порода разрушается после первого удара. Уменьшение силы требует увеличения числа ударов по одной и той же точке. Ниже некоторого значения силы разрушения породы не произойдет при любом числе ударов.

Разрушение породы при циклических напряжениях обусловливается ее усталостью. Число циклов нагружения при напряжениях, близких к пределу усталости, необходимое для разрушения таких пород, как мрамор, известняк, доломит, кварцит, составляет 50–110. Отношение предела усталости к прочности для этих пород в зависимости от пластичности колеблется в пределах от 1/21 до 1/29.

Установлено, что в процессе вдавливания наконечников разрушение породы наступает при их погружении на 0,10–0,25 мм, а продолжительность цикла разрушения породы составляет около 0,002 с. Таким образом, скальные породы разрушаются без внедрения в них зубцов шарошек. При большей продолжительности контакта зубцов с породой происходит их погружение, но не в материнскую породу, а в продукты ее разрушения. Меньшей, но продолжительно действующей силой можно достигнуть большего разрушительного эффекта, чем большей силой, но действующей мгновенно. Следовательно, в реальных условиях при бурении с увеличением частоты вращения долота необходимо увеличивать осевую нагрузку. На эффект разрушения горных пород частота вращения долота оказывает двоякое влияние: эффективность разрушения возрастает, но вместе с тем снижается продолжительность контакта зубцов шарошки с породой, что снижает эффективность разрушения.

181

При поверхностном разрушении механическая скорость проходки увеличивается пропорционально росту частоты вращения.

Порода разрушается и при действии на нее струи жидкости, которая истекает из отверстий долота, причем следует выполнять следующие условия: поток жидкости должен оказывать на забой давление p, скорость перемещения струи у относительно плоскости забоя не должна превышать некоторой величины, конкретное значение которой зависит от pt и прочности породы Rсж.

Между этими величинами установлена эмпирическая зависимость pt > > к011сж, что справедливо при v = 0,5 м/с (здесь к0 – опытный коэффициент, равный 0,25–0,35).

Для конкретных условий бурения максимальная механическая скорость проходки будет только при определенном сочетании частоты вращения, осевой нагрузки на долото и расхода жидкости. Этот расход – оптимальный. Рекомендуется подбирать соответствующее сочетание параметров гидромониторной струи, обеспечивающее окончательный отрыв и увлечение частиц, преодоление угнетающего их перепада давления, образующегося при непрерывном процессе фильтрации жидкости в зону разрушения.

Выбор оптимальных процессов, связанных с бурением скважины, пока невозможен из-за различных технико-технологических трудностей и незнания упругих, пластических, прочностных и абразивных свойств горных пород. Тем не менее, пользуясь обобщенными показателями, характеризующими свойства горных пород, можно добиться существенных результатов. Один из таких показателей – буримость горных пород.

Под буримостью понимают углубление скважины за 1 ч собственно бурения – так называемую механическую скорость проходки ум (м/ч). Эта скорость с течением времени вследствие износа долота экспоненциально уменьшается.

При правильно подобранных режимах бурения, когда обеспечивается объемное разрушение горных пород, механическая скорость изменяется обратно пропорционально твердости. Она зависит также от других свойств (упругости, пластичности и др.).

Если породы определенной группы разбуривают долотами одной и той же модели, одного размера, при постоянных режимах бурения, то по темпу снижения механической скорости проходки можно судить об относительной абразивной способности пород.

6.5. ВЛИЯНИЕ ПОКАЗАТЕЛЕЙ СВОЙСТВ И ТИПОВ БУРОВЫХ РАСТВОРОВ НА СКОРОСТЬ БУРЕНИЯ

Основные показатели свойств бурового раствора (плотность, вязкость, показатель фильтрации, содержание и состав твердой фазы) зависят, прежде всего, от компонентного состава. Нет ни одного материала для буровых растворов, который бы сугубо избирательно воздействовал на показатели свойств приготовленной системы. С увеличением содержания твердой фазы возрастает плотность, но уменьшается показатель фильтрации. Обработка растворов полимерами с целью уменьшения показателя фильтрации сопровождается повышением вязкости системы. Разжижение бурового раствора, как правило, увеличивает показатели его фильтрации.

182

Таким образом, основные показатели технологических свойств бурового раствора взаимосвязаны. Однако путем комбинации реагентов удается избирательно регулировать любой показатель при фиксировании остальных. Поэтому представляется целесообразным рассмотреть степень влияния каждого показателя на эффективность работы долот и скорость бурения скважин. Но при вскрытии продуктивного пласта остается не решенной проблема ненарушения его проницаемости.

Качественные зависимости механической скорости проходки от показателей свойств бурового раствора свидетельствуют о том, что эффективность работы долота ухудшается по мере увеличения плотности, количества твердой фазы, вязкости раствора и уменьшения фильтрации. Однако эти зависимости не равнозначны. Наибольшее влияние на механическую скорость проходки оказывают плотность и наличие твердой фазы бурового раствора. Воздействие вязкости всегда заметно, но менее существенно. Что касается показателя фильтрации, то его влияние установлено, однако скорее обусловлено изменением вязкости: с увеличением показателя фильтрации уменьшается вязкость бурового раствора.

Путем обработки промысловых данных методами математической статистики удалось установить, что с увеличением плотности ? бурового раствора механическая скорость проходки гиперболически понижается. Особенно это заметно в интервале ? = 1,0?1,5 г/см3.

Убедительные данные получены при бурении скважин на Кубани, где уточнены требуемые значения гидростатических давлений в скважинах ряда площадей, в результате чего появилась возможность понизить плотность бурового раствора.

На примере площадей Днепровско-Донецкой впадины В.П. Мациев-ский показал влияние плотности бурового раствора на механическую скорость проходки. С увеличением плотности бурового раствора от 1,2 до 1,4 механическая скорость проходки уменьшалась почти вдвое.

Плотность бурового раствора, г/см3 ............. 1,20 1,24 1,28 1,32 1,35 1,40

Механическая скорость проходки, м/ч ........ 7,4 6,6 6,0 5,0 4,5 4,2

Данные бурения скважин показывают отрицательное влияние твердой фазы на показатели работы долот. По мере увеличения общего содержания твердой фазы скорость vм и проходка на долото, как правило, уменьшаются.

Влияние твердой фазы на показатели работы долот зависит от способа бурения. Результаты бурения на севере Тюменской области (М.В. Холик и др., 1980) показали, что наиболее вредно на работу долот влияет твердая фаза при турбинном бурении.

Влияние на механическую скорость проходки содержания твердой фазы в растворе исследовано П. Муром. Снижение содержания твердой фазы от 36 до 4 % способствует росту механической скорости проходки. При этом уменьшение количества твердой фазы в области высоких ее концентраций, например, от 24 до 20 % приводит к увеличению vм всего на 3 %, а уменьшение в области более низких концентраций, например, от 12 до 8 % обеспечивает прирост vм на 9 %. Эта тенденция усиливается по мере дальнейшего снижения содержания твердой фазы в растворе.

Природа воздействия твердой фазы бурового раствора на эффективность разрушения горных пород выражается кроме повышения плотности

183

бурового раствора в ухудшении условий зарождения и распространения трещин, формирующих лунку выкола.

Более детальный анализ показывает, что разные материалы, составляющие твердую фазу буровых растворов, по-разному влияют на показатели бурения скважин.

Материал ...................................................................................... Барит Буровой шлам Глина

Снижение механической скорости проходки, %, при

увеличении содержания твердой фазы на 1 % ................... 2,6 4,8 6,7

П р и м е ч а н и е. Общее содержание твердой фазы 4–12 % (по объему).

При эквивалентном объемном содержании частиц бурового шлама и барита снижение скорости в первом случае в 2 раза больше, чем во втором. Если учесть, что барит повышает плотность бурового раствора в 2 раза эффективней, чем шлам, то становится очевидным, что при необходимости увеличения плотности бурового раствора следует использовать более тяжелые материалы (например, барит), а не выбуренную породу, стремясь всегда к минимизации объемного содержания его твердой фазы.

Особенно неблагоприятно влияет на работу долота глинистая составляющая бурового раствора: на каждый процент увеличения глинистых частиц в растворе потеря в механической скорости проходки составляет 6– 7 %, т.е. более чем в 2,5 раза больше, чем при увеличении на 1 % концентрации барита. Отсюда можно сделать вывод, что в буровом растворе необходимо иметь минимальную концентрацию глинистых частиц и тщательно контролировать и регулировать ее.

Влияние вязкости бурового раствора на механическую скорость проходки менее существенно, чем влияние плотности, однако оно часто заметнее и однозначнее.

С увеличением условной вязкости бурового раствора в среднем от 4– 20 до 8–120 с (по СПВ-5) механическая скорость проходки уменьшается на 20–40 %. Особенно заметно это в области повышенных плотностей (1,3– 1,4 г/см3) бурового раствора (А.Н. Яров, А.Н. Мельничук).

Особенно тесная корреляция в стендовых условиях наблюдается между механической скоростью проходки и вязкостью фильтрата бурового раствора. При изменении его вязкости от 2?10–3 до 8?10–3 Па?с механическая скорость проходки линейно уменьшается как для шарошечных, так и для алмазных долот в 1,5–2 раза.

Итак, теоретические, лабораторные и промысловые данные подтверждают, что показатель вязкости бурового раствора (или его фильтрата) влияет на эффективность разрушения долотом пород на забое: с увеличением этого показателя условия разрушения пород ухудшаются.

Статистические данные о бурении скважин в Днепровско-Донецкой впадине показывают, что механическая скорость проходки надежно корре-лируется с показателем фильтрации используемого бурового раствора. Увеличение механической скорости проходки отмечается в связи с ростом показателя фильтрации во всем диапазоне изменения плотности. Особенно это заметно при повышенной плотности бурового раствора, когда при изменении показателя фильтрации от 5 до 30 см3 за 30 мин механическая скорость проходки увеличивается в среднем на 20–50 %.

Природа воздействия фильтрации буровых растворов на механическую скорость проходки выражается в изменении гидродинамических процессов в разрушаемом на забое слое породы.

184

Для достижения высоких vм необходимо, чтобы начальная фильтрация буровых растворов в момент разрушения породы на забое была высокой, так как это способствует быстрейшему выравниванию перепада давления. Однако при вскрытии продуктивных объектов к выбору показателя фильтрации растворов необходимо подходить избирательно и осторожно, так как качество вскрытия пласта – основной показатель успеха бурения.

Зарубежный и отечественный опыт убеждает, что от степени совершенства технологии промывки скважин в значительной мере зависят механическая скорость проходки и проходка на долото – основные технические показатели бурения скважин. Правильно выбранные тип бурового раствора, показатели его технологических свойств, режим циркуляции и распределение гидродинамических давлений в циркуляционных каналах позволяют довести эти технические показатели до максимума, а вероятность возникновения осложнений свести к минимуму.

В современной технологии промывки скважин еще много неиспользованных возможностей.

Переход в зарубежной практике бурения скважин на применение буровых растворов с содержанием твердой фазы на 3–4 % (вместо 10–12 %) позволил увеличить проходку на долото до 40 %, механическую скорость проходки – до 30 %. Снижение концентрации глинистых частиц на 1 % позволило получить приращение механической скорости проходки в среднем на 6–7 %.

Из практики бурения скважин известно, что буровой раствор на углеводородной основе обходится очень дорого. К тому же он создает определенные неудобства для обслуживающего персонала и часто пожароопасен. Однако с помощью таких растворов можно достичь тех результатов, которых невозможно достичь растворами на водной основе, например, при вскрытии продуктивных горизонтов.

Растворы на углеводородной основе могут обеспечить высокие показатели работы долот. Такие растворы более устойчивы к высоким температурам, позволяют избежать осложнений при бурении солевых отложений и пород, склонных к набуханию в водных средах.

Положительна роль раствора при наличии сероводорода и двуокиси углерода, так как дисперсионная среда раствора неэлектропроводна. Умело регулируя водосодержание в них, можно на длительный период избежать осыпей и обвалов в неустойчивых глинистых разрезах.

В 1967 г. C.P. Lawhon сообщил результаты экспериментов по определению влияния воды в дизельном топливе на скорость проходки в известняках проницаемостью (0,35–1,3)?10–13 м2 и в песчаниках проницаемостью до 5?10–13 м2 при бурении шарошечным долотом малого диаметра (d ? ? 32 мм). Он установил, что скорость проходки с чистым дизельным топливом составляла 98 % скорости проходки при бурении на воде; для бурового раствора она составляла 86 %; при увеличении содержания воды от 5 до 40 % относительная скорость проходки несколько увеличилась (на 7 %).

На основе своих опытов С.Р. Lawhon сделал следующие выводы:

1. Маловязкий раствор на нефтяной основе, в частности дизельное топливо, позволяет получить такую же скорость проходки, как и с использованием технической воды.

2. Растворы на углеводородной основе с высокой концентрацией воды позволяют обеспечить примерно такую же скорость проходки, как и высококачественные буровые растворы на водной основе с оптимальной добав-185

кой смазывающих веществ (нефть, гудроны и др.). Позже эти выводы были подтверждены.

Положительный опыт применения в качестве бурового раствора гидрофобной эмульсии, стабилизатором для которой служит многотоннажный продукт нефтехимической промышленности – окисленный петролатум, описан А.Г. Розенгафтом. Путем введения в эту эмульсию гидроокиси кальция достигается хорошая агрегативная устойчивость, позволяющая увеличить ее «глиноемкость» до 20 % по весу. Такая эмульсия включает в себя 45 % дизельного топлива или нефти, 50 % воды, 5 % окисленного пет-ролатума, 3–5 % гидроокиси кальция. В зависимости от минералогического состава хемогенных пород вода может насыщаться хлористыми солями натрия, магния или кальция.

В Мамонтовском УБР объединения «Зипсиббурнефть» разработан и внедрен маловязкий нефтеэмульсионный буровой раствор, который получают, добавляя в буровой раствор на водной основе нефть совместно с эмульгатором неионогенного типа и переводя его в устойчивую эмульсию.

Применение такого раствора при бурении скважин позволило улучшить показатели работы долот: проходка на долото увеличилась в среднем на 15 %, а механическая скорость проходки – на 7 %.

Применение нефтеэмульсионных растворов позволяет сохранить устойчивым ствол скважины в глинистых отложениях, что не ухудшает показатели долота, а способствует улучшению выноса керна и сохранению естественной проницаемости нефтеносных горизонтов.

Преимущества растворов на углеводородной основе (РУО) по сравнению с растворами на водной основе объясняются следующим:

1. Фильтрат РУО представлен углеводородами, благодаря ему исключается набухание глинистых минералов, сохраняется естественная устойчивость глинистых резервов и естественная проницаемость гранулярных коллекторов, в цементирующем веществе которых присутствует глина.

2. РУО не только предотвращает диспергирование шлама, особенно при бурении в глинах, но и агрегирует мелкие частицы в более крупные. В результате этого не только улучшается степень очистки забоя и ствола скважины от обломков породы, но и резко повышается эффективность очистки промывочной жидкости от шлама.

3. РУО обладает хорошей смазывающей способностью, в результате чего не только уменьшается вероятность затяжек-посадок, прихватов бурильной колонны, степень ее скручивания при вращении ротором, но самопроизвольно увеличивается нагрузка на долото в связи с уменьшением силы трения труб о стенки скважины при одинаковых значениях осевых нагрузок, определяемых на поверхности по индикатору веса. Это способствует увеличению скорости проходки.

4. Вязкость РУО уменьшается при повышенных температурах, что может стать положительным фактором при бурении глубоких высокотемпературных скважин, так как вызывает раннюю турбулизацию потока под долотом.

Однако, несмотря на все эти преимущества, буровые растворы на углеводородной основе следует рассматривать как предназначенные главным образом для вскрытия нефтегазоносных горизонтов и бурения в разрезах, осложненных неустойчивыми глинистыми породами, хемогенными отложениями и массивом многолетнемерзлых пород. Более широкому их применению будут и впредь препятствовать высокая стоимость, неудобство в

186

обслуживании, взрыво- и пожароопасность, расход важных материалов, трудность хранения и утилизации после окончания бурения скважины, а также другие проблемы, связанные с качеством крепления скважин и разобщения пластов, глубинными геофизическими исследованиями и охраной окружающей среды.

6.6. ВЛИЯНИЕ РЕЖИМА ПРОМЫВКИ НА СКОРОСТЬ БУРЕНИЯ

Одна из главных функций циркулирующего бурового раствора – очистка забоя и ствола скважины от обломков породы. От эффективности выполнения этой функции в значительной мере зависит скорость проходки скважины. Однако в ряде случаев гораздо больше на скорость бурения влияет другой фактор циркуляции – гидромониторный эффект размыва забоя: с увеличением скорости истечения бурового раствора из насадок долота скорость бурения увеличивается.

Скорость и режим циркуляции бурового раствора определяют интенсивность размыва забоя потоком, значение дифференциального давления на забое, качество очистки забоя и ствола от разрушенной породы, степень размыва скважины, энергетические затраты на циркуляцию, т.е. то, что прямо влияет на скорость бурения скважин.

С повышением производительности промывки будет интенсифицироваться размыв породы на забое, улучшаться удаление шлама с забоя, при этом скорость бурения должна увеличиваться. Однако возникают и отрицательные моменты: повышается дифференциальное давление на забое за счет увеличения потерь напора в кольцевом пространстве и давления падающей на забой струи бурового раствора, интенсифицируется процесс размыва стенок ствола скважины восходящим потоком, растут энергетические затраты на циркуляцию, могут возникнуть поглощения бурового раствора.

Таким образом, при выборе гидравлической программы промывки скважины для каждого конкретного случая должно быть принято компромиссное решение, позволяющее достичь высоких скоростей бурения при минимальных затратах на процесс бурения. При этом скорость и направление истечения бурового раствора из насадок долота, режим циркуляции под долотом в кольцевом пространстве скважины, дифференциальное гидродинамическое давление на забое – основные показатели промывки, влияющие на эффективность процесса бурения.

Все показатели промывки определяются прежде всего значением подачи буровых насосов и настолько тесно взаимосвязаны, что зачастую их роли трудно разделить.

Производительность циркуляции бурового раствора – комплексный показатель промывки скважин. С ростом этого значения улучшается очистка забоя, а следовательно, повышается эффективность работы долота. В то же время увеличиваются потери давления в кольцевом пространстве и растет гидродинамическое давление на забое, создаются неблагоприятные условия для отхода сколотой долотом частицы от забоя, КПД долота снижается, вследствие чего уменьшаются механическая скорость проходки и проходка на долото.

В.С. Федоровым установлено, что существует определенный предел

187

технологически необходимого расхода промывочной жидкости, дальнейшее увеличение которого нерационально. Этот предел диктуется, в первую очередь, необходимостью обеспечения эффективной очистки забоя от шлама. Его находят опытным путем.

При изучении влияния плотности бурового раствора на показатели работы долота установлено, что в разных условиях бурения оно количественно разное и зависит также от глубины скважины, типа пород, порового давления и т.д. Лучше всего проходка на долото и механическая скорость проходки коррелируются с дифференциальным статическим давлением (с разностью между гидростатическим и внутрипоровым давлениями). Чем меньше эта разность, тем эффективней порода разрушается долотом. Очевидно, дифференциальное давление на забое является комплексным параметром, который значительно влияет на характер взаимодействия долота с породой на забое.

С увеличением производительности циркуляции бурового раствора растут гидравлические потери в кольцевом пространстве скважины и в связи с этим повышается гидродинамическое давление на забой. Особенно это заметно при переходе от ламинарного режима течения к турбулентному. Потери давления в кольцевом пространстве скважины могут при этом измениться на единицы и даже десятки атмосфер. Эти значения иногда малы по сравнению с гидростатическим давлением столба бурового раствора, однако и они могут оказать решающее влияние, особенно тогда, когда гидростатическое и пластовое (внутрипоровое) давления близки по значению, что характерно для современной технологии бурения скважин.

Таким образом, отрицательным последствием интенсификации промывки скважины может стать увеличение дифференциального давления на забое скважины и, как следствие, ухудшение условий разрушения породы на забое скважины.

Один из основных факторов, влияющих на эффективность работы по-родоразрушающего инструмента на забое скважины, – качество очистки забоя от обломков породы циркулирующим буровым раствором (под качеством очистки забоя будем понимать скорость смыва и количество смываемых частиц шлама. Как правило, бурение (особенно турбинное) осуществляется в условиях несовершенной очистки забоя скважины. Из-за зашламленности забоя зубья породоразрушающего инструмента не имеют непосредственного контакта с поверхностью разрушаемой породы; осевая нагрузка со стороны долота воспринимается не только забоем, но и шламовой подушкой. Эффективность внедрения зуба долота в забой скважины существенно ухудшается, скорость проходки уменьшается.

Выполненные в Уфимском нефтяном институте исследования показали, что даже тонкий слой шлама на поверхности мрамора на 30–40 % снижает передаваемое на мрамор усилие со стороны вдавливаемого пуансона (зуба).

Лабораторными исследованиями, выполненными фирмой «Эссо Про-дакшн» с помощью микродолот, установлено, что механическая скорость проходки наилучшим образом коррелируется с функцией числа Рейнольд-са. Последующие промысловые исследования, выполненные фирмой «Им-периэл Ойл» в Канаде, подтвердили характер этой зависимости.

Считается, что причиной тесной корреляции между механической скоростью проходки и числом Рейнольдса потока бурового раствора под долотом служит то, что число Рейнольдса является показателем толщины

188

пограничного слоя бурового раствора у забоя. А сам пограничный слой затрудняет смыв обломков породы с забоя.

При Re = 100-1000 характерна ситуация, когда обломки породы удаляются вихрями, которые образуют движущиеся зубья долота. При этом пограничный слой настолько велик, что при неподвижном долоте обломки породы с забоя потоком бурового раствора не смываются. В этом случае механическая скорость проходки не зависит от числа Рейнольдса.

По мере увеличения числа Рейнольдса от 103 до 105 вихревые потоки начинают достигать забоя. В результате уменьшения толщины пограничного слоя качество очистки забоя от обломков породы улучшается, и, как следствие, увеличивается механическая скорость проходки. В этом диапазоне чисел Рейнольдса темп увеличения механической скорости проходки наибольший.

При Re = 105-106 интенсивность роста механической скорости проходки по-прежнему заметно снижается.

Наконец, при Re > 106 достигается совершенная очистка забоя, и механическая скорость проходки снова не зависит от числа Рейнольдса. Обломки породы с забоя удаляются сразу же после их образования и не попадают повторно под зубья долота. Поэтому дальнейшее увеличение числа Рейнольдса не способствует заметному увеличению механической скорости проходки за счет улучшения качества очистки забоя. Однако это не исключает дальнейшего повышения эффективности работы долота путем увеличения осевой нагрузки и частоты его вращения, скорости истечения бурового раствора из насадок долота и т.д.

Для практического применения результатов описанных исследований и экспериментов предлагается использовать понятие индекса механической скорости проходки (ИМС), который связывают с числом Рейнольдса следующими эмпирическими зависимостями: при Re < 1900 ИМС = 0,04; при 1900 < Re < 5-104 ИМС = 0,001 Re0,45; при 5-104 < Re < 5-105 ИМС = = 0,01 Re0,27; при Re > 5-105 ИМС = 0,32.

Индекс механической скорости проходки отражает лишь влияние свойств бурового раствора и режима циркуляции в поддолотной зоне на качество очистки забоя от выбуренной породы, но он не учитывает эффект размыва забоя гидромониторной струей. Для перехода через этот показатель ИМС к абсолютному значению механической скорости проходки необходимо знать для данных конкретных условий значение механической скорости и соответствующее ему значение ИМС:

ум = м (ИМС)х,

(ИМС)А

где vмX и умд – соответственно искомая и известная механическая скорость проходки; (ИМС)Х, (ИМС)А – индексы механической скорости проходки соответственно для vмX и умд.

Расчеты показывают, что при прочих равных условиях ИМС выше при меньшем числе насадок на долоте. Это подтверждено результатами промысловых экспериментов: закупоривали в период долбления одну-две насадки долота, и при этом механическая скорость проходки никогда не уменьшалась, а часто, наоборот, увеличивалась.

Таким образом, режим течения бурового раствора под долотом может существенно повлиять на показатели работы долота, так как служит определяющим фактором в степени очистки забоя от шлама.

189

Из отечественной и зарубежной практики бурения скважин известно, что по мере увеличения скорости истечения бурового раствора из отверстий долота разрушение забоя долотом интенсифицируется. Это обусловлено, с одной стороны, увеличением количества подаваемой к забою промывочной жидкости, а с другой – увеличением кинетической энергии струи, бомбардирующей поверхности забоя. Механическая скорость проходки тесно коррелируется с гидравлической мощностью, срабатываемой на долоте, и со скоростью струи бурового раствора в насадках долота: с увеличением этих параметров механическая скорость проходки увеличивается.

Промыслово-экспериментальные работы (ВНИИБТ) при бурении роторным способом позволили установить, что с увеличением скорости истечения струи из насадок гидромониторных долот от 56 до 111–127 м/с при практически неизменной производительности циркуляции бурового раствора достигалось увеличение механической скорости проходки почти в 2 раза. Установлено, что с увеличением перепада давления на насадках долота от 2,0 до 10,5 МПа при производительности циркуляции 20–26 л/с механическая скорость проходки возрастала в 2–3 раза. Причем наиболее интенсивный рост механической скорости проходки отмечался в диапазоне перепадов давлений на насадках 3,0–8,0 МПа. При перепаде на насадках более 9,0 МПа зависимость механической скорости проходки от скорости истечения бурового раствора из насадок долота заметно ослабевала.

На основании выполненных работ в Ставрополье сделаны практически важные выводы о роли скорости истечения струи из насадок гидромониторных долот в процессе разрушения пород на забое: при увеличении скорости истечения от 40–70 до 100–110 м/с при бурении в мягких породах можно повысить механическую скорость проходки на 50–100 % и рейсовую скорость бурения – на 10–60 %; в породах средней твердости в этом случае можно достичь увеличения механической скорости проходки на 30–80 %.

На эффективность размыва породы гидромониторной струей значительно влияет гидростатическое давление: с увеличением его эффективность размыва забоя струей снижается. Но если с технологической точки зрения положительная роль высокоскоростной струи в разрушении породы долотом очевидна, то целесообразность применения гидромониторных долот при бурении в разных геологических условиях определяется прежде всего прочностными характеристиками разбуриваемых пород.

Экспериментальным путем установлено (Б.В. Байдюк, Р.В. Винярский), что при действии гидромониторной струи на забой скважины могут наблюдаться три частных эффекта, в совокупности определяющие роль струи в разрушении забоя.

Первый – эффект смыва с забоя сколотых частиц породы (шламовой подушки). Как было указано выше, он определяется не столько силой удара струи о забой, сколько режимом течения промывочной жидкости в поддо-лотной зоне. Второй заключается в выемке недоразрушенной породы и в разрушении перемычек между лунками, образовавшимися под зубьями долота. Третий заключается в непосредственном разрушении струей материнской породы.

Согласно исследованиям Н.А. Колесникова, А.К. Рахимова и других выявляется четвертый эффект воздействия гидромониторной струи. С увеличением скорости взаимодействия струи с забоем проницаемых горных

190

пород возрастает интенсивность смыва глинистой корки, что обусловливает рост давления на глубине разрушения и снижает напряжения в скелете породы. В итоге облегчаются условия и эффективность разрушения горных пород.

Частные гидромониторные эффекты зависят от соответствующего сочетания твердости и проницаемости породы. При этом суммарный гидромониторный эффект для одной и той же породы не является монотонной зависимостью от удельного давления струи на забой, а представляет собой сменяющие друг друга участки усиления и ослабления эффекта, а значения удельных давлений, соответствующие этим участкам, зависят от твердости и сплошности породы.

Итак, совершенствование гидравлической программы промывки скважин – важный резерв повышения скоростей бурения, особенно в мягких и средних породах, при использовании гидромониторных долот.

После установления влияния различных показателей технологического процесса промывки на скорости бурения скважин появляется возможность сформулировать основные требования к буровым растворам, которые вытекают из необходимости обеспечения в процессе бурения минимального дифференциального давления на забое, минимальной толщины фильтраци-онно-шламовой подушки на забое, совершенной очистки забоя от обломков разрушенной долотом породы, максимальной силы удара о забой струи бурового раствора, вытекающего из насадок долота.

С позиций достижения наилучших показателей работы долот и повышения скоростей бурения скважин к буровым растворам можно предъявить следующие основные требования:

1) жидкая основа буровых растворов должна быть маловязкой и иметь низкое значение поверхностного натяжения на границе с горными породами;

2) в твердой фазе бурового раствора концентрация глинистых частиц должна быть минимальной, а средневзвешенное по объему значение плотности твердой фазы – максимальным;

3) буровые растворы должны быть недиспергирующими под влиянием изменяющихся термодинамических условий в скважинах. Они должны иметь стабильные показатели технологических свойств;

4) буровые растворы должны быть химически нейтральными по отношению к разбуриваемым породам, не вызывать их диспергирования и набухания;

5) буровые растворы не должны быть многокомпонентными системами, а используемые для регулирования их свойств химические реагенты, наполнители и добавки должны обеспечивать направленное изменение каждого технологического показателя при неизменных других показателях;

6) желательно, чтобы буровые растворы в своем составе имели не менее 10 % смазывающих добавок, а также содержали газообразную фазу.

Естественно, эти общие требования не являются догмой, а их выполнение во многом зависит от геолого-технических условий бурения. Однако они позволяют выбрать именно тот раствор, который не только исключит осложнения и аварии в скважине, но и обеспечит высокие скорости ее бурения. В каждом конкретном случае необходимо решать комплексную задачу о целесообразности применения того или иного раствора с учетом технической вооруженности буровой установки, оперативности снабжения

191

ее материалами, квалификации работников, географического положения скважины и т.д.

Выполнение на практике сформулированных общих требований к буровому раствору необходимо, но недостаточно для выбора бурового раствора с целью обеспечить сохранность проницаемости продуктивного горизонта. Критерии выбора несколько иные. Безусловно, только реализация наиболее полного комплекса предложенных мероприятий позволит достичь заметного повышения эффективности бурения скважин. Использование лишь некоторых мероприятий вряд ли позволит достичь стабильного технологического и экономического эффекта.

6.7. РЕЖИМЫ БУРЕНИЯ

Углубление (механическое бурение) – это результат разрушения горных пород долотом, вращающимся с определенной скоростью и находящимся под некоторой нагрузкой при постоянном очищении забоя скважины от выбуренной породы буровым раствором определенного качества, движущимся с некоторой заданной скоростью.

Об эффективности бурения обычно судят по скорости проходки скважины и стоимости метра проходки. Для оценки отдельных видов работы, связанных с проходкой скважины, введены понятия о механической, рейсовой, технической, коммерческой и полной скоростях бурения. Ниже дается взаимная связь между этими скоростями.

Примем следующие обозначения:

vср – средняя механическая скорость бурения, м/ч;

vр – рейсовая скорость бурения, м/ч;

vт – техническая скорость бурения, м/ч или м/станко-месяц;

vк – коммерческая скорость бурения, м/станко-месяц;

vп – полная скорость бурения, м/станко-месяц;

Tб – продолжительность бурения скважины, включая расширку и проработку tп, ч;

Tсп – продолжительность спускоподъемных работ, связанных со сменой долот, включая и время на наращивание инструмента, ч;

Tосн – продолжительность всех производительных работ, кроме предусмотренных Tб и Tсп, ч;

Tп – продолжительность непроизводительного времени (остановки, ликвидация аварий и т.д.), ч;

Tв – продолжительность строительства вышки и монтажных работ, ч;

L – глубина скважины, м.

Тогда

vср = L/Tб; (6.2)

vр = vср/(1 + Tсп/Tб); (6.3)

vт = vср ; (6.4)

1+(Tсп +Tосн )/Tб

vк = vср , (6.5)

c[1 +(Tсп +Tосн +Tн) / Tб ]

192

vп = vср , (6.6)

c[1 +( Tсп +Tосн +Tп +Tв / Tб) ]

где n – переводный коэффициент времени (с часов на месяцы).

Указанные соотношения можно представить и несколько иначе, а именно:

vр = L ; (6.7)

(Tб +Tсп)

vт = ; (6.8)

c[1 +Tосн / (Tб +Tсп ) ]

vк = vт ; (6.9)

c[1 +Tн / (Tб +Tсп +Tосн ) ]

vп = vк . (6.10)

c[1 +Tв / (Tб +Tсп +Tосн +Tн ) ]

Из приведенных формул видно, что vр, vт и vк зависят от vср, кроме того, из перечисленных скоростей каждая последующая зависит от предыдущей.

С ростом vк соответственно увеличивается vр и vк, что согласуется с выводами, вытекающими из формул (6.2)–(6.5).

Многочисленными исследованиями установлено, что vср, vр, vт и vк уменьшаются с увеличением глубины L скважины, а стоимость метра проходки при всех способах бурения является возрастающей функцией глубины скважины.

С ростом vк, как правило, резко уменьшается удельный расход электроэнергии в бурении, уменьшается расход материалов, используемых при бурении. Представляет несомненный интерес выявление факторов, влияющих на скорость бурения; установление влияния каждого из факторов в отдельности и в совокупности; установление природы падения скорости бурения в связи с углублением скважины; изыскание путей для уменьшения темпа снижения скорости бурения в связи с ростом глубины скважины.

На темп углубления скважины решающее влияние оказывают три группы факторов (по В.С. Федорову):

1. Группа природных факторов (механические свойства пород, условия их залегания, природа вещества, заполняющего поровые пространства, и др.).

2. Технико-технологические факторы (способ разрушения породы, конструктивные особенности и долговечность разрушающих инструментов, метод удаления с забоя скважины выбуренной породы, совершенство и мощность бурового оборудования и т.д.).

3. Деловая квалификация работников буровой бригады. Значительно влияют на скорость бурения организация работ в смене, сработанность рабочих в смене, их деловая квалификация.

193

Влияние различных факторов на процесс бурения

Буровые долота выбирают в зависимости от физико-механических свойств горных пород, глубины их залегания и способа бурения. Применяют шарошечные, лопастные, фрезерные, дробящие, алмазные долота и долота ИСМ различных типов и размеров для сплошного бурения и бурения кольцевым забоем. Для мягких пород рекомендуются долота режуще-скалывающего типа. Для разрушения абразивных пород средней твердости, твердых, крепких и очень крепких пород предназначены долота дробяще-скалывающего действия, разрушающие породу зубьями или штырями, расположенными на шарошках, вращающихся вокруг своей оси и оси долота. Одновременно с дробящим действием зубья или штыри шарошек при проскальзывании по забою скалывают породу.

Для разбуривания пород, перемежающихся по твердости и абразивно-сти, используют долота истирающе-режущего действия, разрушающие породу твердосплавными штырями, расположенными в торцевой части долота или в кромках его лопастей. Алмазные долота рекомендуется применять для разбуривания пород твердых и средней твердости. Наибольший удельный вес в отечественной и зарубежной практике бурения имеют трехша-рошечные долота различных типов и размеров.

Для увеличения скорости бурения большое значение приобретает углубление и расширение теоретических и экспериментальных исследований механики разрушения горных пород и режима бурения скважин, так как частичная модернизация шарошечных долот и технологии бурения уже не обеспечивает существенного роста основных технико-экономических показателей буровых работ.

Режим бурения. По В.С. Федорову, под режимом бурения понимают определенное сочетание факторов, влияющих на показатели бурения. Эти факторы называются параметрами режима бурения.

К числу важнейших параметров относятся: осевая нагрузка на долото Рд; частота вращения долота (или ротора) л; количество (расход) циркулирующего бурового раствора; качество циркулирующего бурового раствора, подаваемого на забой (фильтрация Ф, статическое напряжение сдвига 8, вязкость г), плотность р).

Соотношения между параметрами режима подбирают таким образом, чтобы получить наиболее высокие количественные показатели при требуемых качественных и возможно более низкую себестоимость 1 м проходки.

Обобщенным количественным показателем механического бурения, зависящим от параметров режима бурения, является рейсовая скорость проходки ур.

Сочетание параметров режима бурения, при котором получают наиболее высокую рейсовую скорость проходки ур и требуемые качественные показатели бурения, при данной технической вооруженности буровой называется оптимальным режимом бурения.

В практике бурения встречаются случаи, когда необходимо подбирать параметры режима бурения для решения специальных задач – обеспечить качественные показатели. Количественные показатели бурения в этом случае второстепенные. Такие режимы бурения называются специальными. К ним относятся режимы бурения, применяемые в неблагоприятных геологических условиях, а также режимы бурения, используемые при изменении

194

направления оси ствола скважины (бурение наклонных и горизонтальных скважин) и при отборе кернов. Однако качественное формирование ствола всегда должно быть определяющим.

Механическое разрушение горных пород (углубление) при бурении долотом имеет сложный характер. По количественным показателям углубления нельзя судить о влиянии того или иного параметра на эффект разрушения горных пород: их действие всегда комплексное.

Наиболее эффективное углубление скважины возможно только в том случае, если забой полностью очищается от шлама; в противном случае выбуренная порода оказывает дополнительное сопротивление работе долота, вследствие чего механическая скорость проходки и проходка на долото ниже расчетных величин. Опыт показывает, что технико-экономические показатели проходки скважин в значительной мере зависят от режима промывки и технологических свойств (качества) бурового раствора. Функции буровых растворов многочисленные, однако одними из главных являются те, которые определяют высокие скорости проходки. Если рассматривать только скорость проходки и не принимать во внимание поведение ствола скважины (обвалы, осыпи, поглощения раствора и т.д.), то для достижения максимальных показателей работы долот предпочтительней использовать в качестве промывочного агента маловязкие легкие системы. По степени ухудшения работы породоразрушающего инструмента используемые в мировой практике буровые растворы располагаются в следующем порядке: тяжелый (высокоплотный) высоковязкий буровой глинистый раствор, легкий маловязкий буровой глинистый раствор, эмульсия, буровой раствор на нефтяной основе, вода, вода с ПАВ, аэрированная жидкость, воздух (газ).

Основные факторы, влияющие на технико-экономические показатели бурения, – компонентный состав, плотность, вязкость, показатель фильтрации и другие параметры бурового раствора. Убедительные данные по увеличению скорости бурения при снижении плотности бурового раствора получены на скважинах ряда площадей Краснодарского края. Установлено, что по значимости наиболее существенными факторами, влияющими на показатели работы долот, являются в первую очередь плотность, затем вязкость и, наконец, фильтрация.

С ростом концентрации твердой фазы в буровом растворе механическая скорость проходки и проходка на долото уменьшаются.

Совершенствование технологии промывки скважин должно идти в первую очередь по пути снижения плотности бурового раствора и содержания в нем твердой фазы, что существенно упрощает регулирование вязкости, фильтрации и других параметров раствора.

Влияние плотности бурового раствора на процесс бурения и формирования ствола многогранно. Ее увеличение приводит к улучшению очистки забоя и ствола скважины от шлама вследствие действия архимедовой силы, к росту динамической фильтрации на забое за счет повышения положительного дифференциального давления у забоя и к стабилизации стенок ствола в результате сближения гидростатического давления в скважине и горного давления массива пород. Все это способствует росту технико-экономических показателей бурения.

Но с увеличением плотности раствора возрастает давление на забой скважины, что приводит к дополнительному уплотнению породы и ухудшению условий отрыва частицы от забоя потоком раствора. На разрушение

195

образующейся на забое толстой глинистой корки затрачивается энергия, при этом усиливается поглощение раствора вскрытым разрезом и продуктивными пластами. Мировой опыт бурения скважин свидетельствует о том, что положительное влияние повышения плотности раствора неизмеримо меньше, чем отрицательное, поэтому, если позволяют геологические условия, следует бурить с использованием раствора меньшей плотности, даже если при этом необходимо усложнять технологический процесс промывки и применять более сложное оборудование. Скорость проходки при этом неизменно возрастает.

Роль фильтрации по сравнению с плотностью и содержанием твердой фазы незначительна. Среднестатистические данные показывают, что в во-доглинистых системах с увеличением содержания нефти до 10 % скорость проходки растет. Дальнейшее повышение ее концентрации приводит к обратному эффекту. Эти качественные зависимости показывают лишь тенденцию изменения параметров бурения при изменении основных технологических свойств бурового раствора.

Роль фильтрации раствора в процессе углубления скважины также неоднозначна. С увеличением фильтрации на забое облегчаются условия скалывания и отрыва частицы долотом в результате действия расклинивающих сил проникающего фильтрата и выравнивания давления вокруг скалываемой частицы; но при увеличении фильтрации уменьшается устойчивость ствола, на забое и на стенке образуются толстые глинистые корки. Разумеется, величина фильтрации определяется конкретными условиями. Но вполне очевидно, что фильтрация на некоторое время (принято 30 мин) должна быть минимальной для повышения устойчивости стенки скважины, а мгновенная фильтрация (5–10 с) должна быть максимальной (приближающейся по величине к фильтрации за 30 мин) для улучшения условий бурения.

Вязкость раствора влияет на скорость проходки однозначно. Роль вязкости бурового раствора наиболее заметна, особенно в диапазоне 15–35 с (по прибору ПВ-5). При бурении стремятся снижать вязкость раствора. Это связано с желанием получать на долоте максимальную гидравлическую мощность при высокой скорости истечения раствора из насадок долота. При правильно выбранном режиме промывки скважины вязкость в процессе транспортирования шлама играет подчиненную роль.

Таким образом, при оптимальном соотношении показателей буровых растворов скорость проходки может быть существенно повышена.

Технологические параметры промывки, скорость и режим течения бурового раствора определяют интенсивность размыва забоя потоком, дифференциальное давление на забое, смыв разрушенной породы с забоя, транспортирование шлама от забоя к устью скважины и т.д. Очевидно, что с увеличением расхода бурового раствора повышается интенсивность разрушения забоя, а скорость проходки возрастает. Но при этом возникают и отрицательные эффекты: дифференциальное давление на забой повышается, увеличивается скорость размыва стенки скважины и т.д. Механическую скорость проходки определяют следующие основные показатели промывки: гидравлическая мощность, срабатываемая на долоте, скорость истечения раствора из насадок долота и дифференциальное давление на забое скважины.

Реализация гидромониторного эффекта струй, выходящих из насадок долота с высокой скоростью, позволяет увеличить скорость бурения и про-196

ходку на долото в мягких породах в 2–3 раза. В твердых сланцах гидромониторный эффект при скоростях истечения струи 50–80 м/с позволяет увеличить скорость проходки и проходку на долото в 1,5 раза.

При больших глубинах энергетические затраты на промывку скважины более ощутимы, чем выигрыш от гидромониторного эффекта долот.

Дифференциальное давление на забой – комплексный фактор, интегрирующий плотность и вязкость бурового раствора, режим циркуляции, соотношение геометрических размеров ствола и бурильного инструмента и т.д. Независимо от первопричины его увеличение всегда сопровождается ухудшением показателей работы долот. Установлено, что при прочих равных условиях механическая скорость проходки увеличивается с уменьшением дифференциального давления на забой.

Обобщив результаты практических наблюдений в России, СНГ, США, Канаде, Иране и других странах, получили качественную зависимость механической скорости проходки от дифференциального давления на забое скважины.

На темп углубления существенно влияют плотность бурового раствора и содержание в нем твердой фазы. Механическая скорость проходки резко снижается при увеличении плотности раствора от 1,0 до 1,5 г/см3, когда роль выбуренной породы существенна по сравнению с таким утяжелителем, как барит. Концентрация твердой фазы в этом диапазоне плотностей достигает 15–25 %.

Анализ зарубежных материалов показал, что при бурении скважин в Южной Луизиане (США) уменьшение дифференциального давления с 7 МПа до 0 привело к росту механической скорости проходки на 70 %. Установлено, что влияние перепада давления на механическую скорость проходки более заметно проявляется при росте осевой нагрузки на долото. Чувствительность механической скорости проходки к дифференциальному перепаду давления на забое возрастает с увеличением осевой нагрузки на долото. При отрицательном дифференциальном перепаде, т.е. когда пластовое давление превышает давление циркулирующего на забое скважины бурового раствора, скорость проходки продолжает увеличиваться, часто в возрастающем темпе.

Механическая скорость проходки при соответствующих осевой нагрузке и частоте вращения долота растет пропорционально гидравлической мощности, срабатываемой на долоте, и скорости истечения раствора из насадок долота. Чем большая часть давления затрачивается на долоте, чем выше скорость струи, лучше очистка забоя и больше гидромониторный эффект.

Частота вращения долота оказывает различное влияние на показатели бурения. Так, при бурении шарошечными долотами увеличение n ведет к соответствующему (пропорциональному) росту числа поражений забоя зубцами шарошек, скорости удара зубцов о породу, динамической составляющей (ударной) нагрузки на долото. Все это повышает эффект разрушения породы долотом, вызывает рост механической скорости проходки. Вместе с тем эти факторы резко сокращают долговечность долота.

При увеличении n уменьшается продолжительность ? контакта зубцов шарошек с породой (n и ? – обратно пропорциональные величины). Это снижает эффект разрушения породы, а следовательно, и механическую скорость проходки. При бурении в результате действия перечисленных

197

факторов, обусловливаемых изменением л, получается очень сложная зависимость между л и ум.

В.С. Федоров, В.Ф. Дудин и Ф.Д. Зенков, рассматривая погружение рабочих элементов долота в породу как движение твердого тела в сопротивляющейся среде, установили, что углубление долота за один оборот в зависимости от частоты вращения можно выразить в следующем виде:

5 = А(1 - е–в/п). (6.11)

Механическую скорость проходки можно выразить формулой

Vм= A(1 – е–в/п)п, (6.12)

где А = 5510–1Рд; В = 0,09 (Рд – удельная нагрузка на долото, Н/м).

Графическое изображение зависимости ум = f(n) свидетельствует о наличии критического значения л, при котором ум = ум max. Для мрамора лкр = 100 об/мин. С увеличением твердости и хрупкости породы лкр возрастает.

Значение лпм выше при больших нагрузках на долото.

Далее критическую частоту вращения долота будем обозначать следующим образом: для механической скорости проходки – nv , рейсовой скорости – nv и проходки на долото – Л.

Формула (6.12) соответствует бурению с объемным разрушением породы.

При бурении турбобуром в мягких глинистых породах частоты вращения должны быть понижены. В хрупких и пластично-хрупких породах скорость ум проходки – возрастающая функция даже при увеличении л > > 800 об/мин.

Уменьшение углубления за один оборот 5п с ростом л обусловливается тем, что с увеличением л уменьшается продолжительность т контакта зубцов шарошки с породой.

Связь между лит выражается (в с) в виде

60d / D т =ш, (6.13)

ш

где dш/D – отношение диаметров шарошки и долота; л – число зубцов на наибольшем венце шарошки.

Из соотношения (6.13) следует, что т зависит не только от л, но и от диаметров долота и шарошек.

Очевидно, при прочих равных условиях, чем больше z (меньше шаг), тем меньше nv , и наоборот, чем меньше dш/D, тем выше nv . Следовательно, nv зависит и от размеров долота.

Описанная зависимость ум =/(л) (6.12) относится к случаям объемного разрушения породы. Если бурят при сравнительно малых осевых нагрузках на долото, то при взаимодействии долота с породой наблюдается разрушение последней истиранием (поверхностное разрушение). В этом случае 8п = 8о = const, а следовательно, ум = л5о.

А.А. Минин и А.А. Погарский проводили исследования по разбурива-нию разных пород на специальном стенде при частоте вращения долота до 4500 об/мин. Максимальная механическая скорость проходки при этом не превышала 48 м/ч. Следовательно, среднее углубление долота за один оборот составляло не более 0,2 мм. При таком темпе углубления долота происходило разрушение породы истиранием.

198

Опыты показали, что при разбуривании цементного камня, известняка и мрамора с увеличением п трехшарошечных долот от 500 до 4500 об/мин механическая скорость проходки увеличивается пропорционально росту п. При бурении в граните прямолинейная зависимость сохраняется при изменении п от 500 до 2500 об/мин. С увеличением п выше 2000– 2500 об/мин механическая скорость проходки возрастает несколько медленнее роста п. Следовательно, для тех пределов, в которых на практике изменяется п, зависимость (6.12) хорошо подтверждается опытами.

В процессе бурения механическая скорость проходки уменьшается при условии, что процесс ведется при р = const и п = const. В этом случае снижение механической скорости проходки обусловливается только износом зубцов.

Относительное уменьшение механической скорости проходки происходит пропорционально времени и обратно пропорционально коэффициенту износа, т.е.

dvм/vм = – dtв.б/ Q't.

Интегрируя это уравнение, получаем ум = Ум0e^б/в'. (6.14)

Проходка на долото за время tб выражается формулой

hp0 = б vмdt = v 6f(1 - e~fб/e') (6.15)

0

где 6[ – коэффициент износа, представляющий собой логарифмический декремент убывания механической скорости проходки, равный времени, в течение которого ум уменьшается в e раз (e – основание натурального логарифма).

Опытные данные А.А. Минина и А.А. Погарского показали, что 1/6t изменяется приблизительно пропорционально изменению нагрузки на долото; с изменением частоты вращения величина 1/8t увеличивается быстрее, чем растет п, особенно при больших его значениях.

Данные свидетельствуют о том, что и для проходки на долото существует критическое значение для п, и притом оно будет меньше, чем для механической скорости проходки.

Рейсовая скорость проходки

Ур = 0 , (6.16)

где tб – время бурения; tп – время, необходимое на проработку и расширение ствола скважины; tсп – время на спуск и подъем бурильной колонны и смену долота.

Для ур также существует критическое значение л; численно оно меньше соответствующего значения для ум и больше, чем для Л.

Итак, n„ > n„ > nh.

Осевая нагрузка на долото. При прочих равных условиях в зависимости от Рд может происходить разрушение породы либо поверхностное, либо объемное.

199

Объемное разрушение может наблюдаться после однократного воздействия на нее зубцов шарошек или после многих воздействий. Первые наиболее полные исследования и обобщения провел В.С. Федоров.

Влияние осевой нагрузки Рд на показатели бурения очень велико. Опытами установлено, что зависимость ум = f(Pд) весьма сложная.

Это обусловливается рядом обстоятельств, однако главнейшие из них – циклический характер разрушения породы, наличие шлама, покрывающего неровную поверхность забоя скважины, ограниченная высота рабочих элементов долот.

Наличие шлама ведет не только к снижению механической скорости проходки, но и к тому, что ум как функция Рд достигает максимума при меньших значениях Рд.

Итак, чем больше шлама на забое, тем раньше наступает максимум ум как функции Рд и тем меньше величина этого максимума.

При высокой частоте вращения долота максимум для ум = f(Pд) наступает при больших Рд, чем при более низком значении п. Отрицательное влияние шлама на ум при более высоком значении п больше, чем при более низком.

Осевая нагрузка, при которой ум достигает максимума, называется критической Ркр. Иногда с ростом осевой нагрузки на долото механическая скорость проходки не увеличивалась, а значительно снижалась. Все это относится к тем случаям, когда к моменту увеличения Рд бурили при Рд > Ркр.

Долговечность шарошечных долот изменяется обратно пропорционально Рд в некоторой степени Y « 0,40-0,45. Вероятно, показатель степени зависит от погружения зубцов шарошки. Когда зубцы не погружены в породу, Рд больше влияет на разрушение долота, чем при погружении зубцов в породу.

С увеличением Рд растут ум и Л. Следовательно, сокращается время собственно на бурение скважины и спускоподъемные операции (в результате уменьшения числа этих операций, числа смен долота). С ростом Рд увеличивается и рейсовая скорость проходки ур.

При увеличении п механическая скорость возрастает, но проходка на долото уменьшается. Следовательно, в этом случае общая продолжительность спускоподъемных операций растет.

Для проходки на долото и рейсовой скорости проходки ур также имеются критические значения осевой нагрузки Рд, которые обозначим соответственно PдV и Рдд. Между этими критическими значениями существуют соотношения

Pr >Pr, Pr >Ph и Pr >Ph.

д^м д^р д ^м д дVр д

Соотношения между параметрами режима бурения, обусловливаемые особенностями разрушения пород при бурении (по В.С. Федорову). Экспериментально доказано, что как для частоты вращения долота, так и для осевой нагрузки Рд на него при использовании долот существуют критические значения, превышение которых ведет к снижению показателей бурения.

С ростом п критическое значение PдV также несколько увеличивается. На величину Рд„ особенно большое влияние оказывает степень очист-ки забоя. С повышением Q величина PдV возрастает. С увеличением плотности промывочной жидкости рп сопротивляемость горных пород возраста-

200

ет, вследствие чего осевую нагрузку на долото Рд необходимо увеличивать. С ростом п обязательно повышается Рд.

Если осевая нагрузка на долото выше той, при которой возможно только поверхностное разрушение породы, но не выше критической величины, частота вращения долота также не превышает критического значения, а количество промывочной жидкости достаточно для удовлетворительной очистки забоя от выбуренной породы, то, как показывают опытные данные, между средними механическими скоростями проходки vм1 и ум2, с одной стороны, и соответствующими им значениями Pд1, щ и Рд2, п2, с другой, существуют соотношения

V «М

м1 =-----д 1, (6.17)

^м2 ^2 ^д2

где х, у – показатели степени.

Между продолжительностью эффективной работы долота на забое t1 и t2 и теми же значениями Pд1, щ и Рд2, п2 установлены соотношения

1 = д . (6.18)

Зависимость (6.17) дает вполне удовлетворительные результаты, когда л не превышает в глинистых породах 300–350 об/мин, в песках и рыхлых песчаниках 450–500 об/мин, в крепких скальных породах 750– 800 об/мин. При бурении в крепких скальных породах при п > 840 об/мин механическая скорость проходки продолжает увеличиваться с ростом л, но при этом х и 0,45.

Выражение (6.18) в основном проверено до п = 500 об/мин. В этом диапазоне щ и 0,5-0,8, а х = 0,7.

Значение показателей степени при Рд колеблется в пределах от 1,1 до 1,5; чаще у = 1,1, а у1 = 0,40-0,45.

Если диапазон изменения п и Рд сравнительно невелик, то можно пользоваться формулой

м1 = 1 д1 . (6.19)

^м2 Л2Рд2

В зарубежной нефтегазовой промышленности нет единых твердо установленных и обоснованных параметров режима бурения, которые рекомендовались бы для разбуривания пород с различными механическими свойствами. Для каждого района имеются параметры режима бурения, которые считаются наилучшими.

Большинство фирм, как тех, которые ведут бурение на промыслах, так и тех, которые выпускают долота, рекомендуют бурить при высоких нагрузках из расчета 1–3ш на 1" диаметра долота, при больших количествах бурового раствора, обеспечивающих скорость восходящего потока в кольцевом пространстве 0,7–1,2 м/с, при относительно малых скоростях вращения ротора (долота) – в пределах от 150 до 200 об/мин (но не выше 300 об/мин).

С увеличением размера долота осевую нагрузку увеличивают примерно пропорционально диаметру долота. При бурении в крепких породах применяют более высокие нагрузки на долото, чем в мягких породах.

201

Рациональная отработка долот (по В.С. Федорову)

Долота рационально отрабатывают в том случае, если бурят при оптимальном сочетании параметров режима бурения и равномерной подаче, т.е. бурят при минимальных значениях (Pд mаx – Pд min)/Pд ср и (nmax – nmin)/nср; продолжительность работы долот выбирают из расчета получения максимальной рейсовой скорости проходки или максимальной стойкости опор долота. Если хоть одно из этих условий не соблюдают, то нельзя считать, что долота отрабатывают рационально.

Опытами установлено, что если увеличивается какой-нибудь параметр режима бурения, а другие остаются постоянными или изменяются, не обеспечивая оптимального сочетания между параметрами, то темп углубления скважины чаще всего снижается. А если и происходит некоторое увеличение показателей бурения, то сравнительно небольшое. При таких условиях отработка долот не может быть рациональной.

Параметры режима бурения n, Pд и Q по-разному влияют на механическую скорость проходки и износостойкость долота, следовательно, оптимальное соотношение между ними отвечает наиболее высокой рейсовой скорости проходки, т.е. наивыгоднейшие значения n, Pд и Q определяются из системы уравнений

?vp/?n = 0; ?vp/?Pд = 0; ?vp/?Q = 0, (6.20)

если при этом будут выполнены соответствующие требования ко вторым производным.

В турбинном бурении часто рациональное соотношение между Pд, n и Q не соответствует оптимальному режиму работы турбобура. Нередко наиболее высокие показатели эффективности отработки долот получают при работе турбобура в области тормозных режимов.

Было установлено, что если в процессе бурения контролировать только осевую нагрузку, то частота вращения долота колеблется до 300 об/мин. Такие колебания n объясняются рядом причин, но главнейшая из них – неравномерность подачи долота (бурильной колонны).

Так как в турбинном бурении Q = const, частота вращения долота n = = ?(Pд), естественно, что при всяком изменении Pд обязательно будет изменяться и n, причем абсолютная величина колебания будет зависеть от коэффициента K (сброса на 0,01 мН нагрузки).

Опыты показали, что во всех случаях, когда долото подается неравномерно, происходят колебания n, в результате эффективность работы долота снижается на 15–25 % и более.

Ориентируясь на рациональную отработку долот, нужно добиваться равномерной подачи бурильной колонны, чтобы колебания n не превосходили 50–80 об/мин.

Чтобы достичь равномерной подачи, следует применять регуляторы подачи долота. Но из-за неровностей на забое скважин и некоторого скольжения шарошек сопротивления, встречаемые долотом, постоянно изменяются, а при этом изменяется и n. Турбинное бурение всегда ведется с некоторым колебанием n, если даже при бурении Pд = const и Q = const.

Рациональная отработка долот невозможна, если нет критериев для определения времени, когда необходимо сменить долото.

Многолетний производственный опыт показывает, что у шарошечных долот наиболее изнашиваются два узла: опоры и рабочая поверхность.

202

Применяемые долота делят на две группы: у одних 7} « Tz, у других Т( > > Tz, где Tf и Tz – износостойкость соответственно опор и рабочей поверхности долот. Очевидно, в зависимости от соотношения между Т{ и Tz метод определения продолжительности эффективной работы долота на забое должен быть различный.

Если Tf « Tz, то в процессе бурения еще задолго до наступления износа рабочей поверхности при высокой механической скорости проходки начинается расстройство опор долота: нарушается плавное качение роликов в большом подшипнике, наблюдается заклинивание роликов, прекращается качение шарошек, создаются значительные сопротивления вращению долота.

В роторном бурении периодами (в момент заклинивания шарошки) резко увеличивается мощность, требуемая на бурение.

В турбинном бурении при нарушении качения роликов в подшипнике долота приемистость турбобура к осевой нагрузке уменьшается. Турбобур начинает останавливаться при осевой нагрузке Рд, меньшей (иногда значительно) первоначальной Рд нач. Если бурят при параметрах режима бурения, соответствующих области тормозных режимов работы турбобура, то указанное явление проявляется в более резкой форме.

Если начинают нарушаться плавность качения опорных элементов долота, заклиниваться шарошки, то может произойти авария с долотом. Заметив это, бурильщик должен прекратить бурение и поднять долото для его смены.

Если для разбуривания нефтяного или газового месторождения длительное время применяют долота одного типа, то на основании статистических материалов для них можно установить время Г, в течение которого наступает расстройство опор; это будет рациональное время эффективной работы долота на забое Гр. После того как долото проработало на забое в течение времени Гр = Г, его необходимо поднять, если даже при этом сохраняется еще сравнительно высокая механическая скорость проходки.

Итак, если Т{ « Tz, то Гp = Т{.

Если рабочая поверхность изнашивается быстрее опор (Tz < Г/или Tz « « 7), то время эффективной работы долота на забое следует определять из условия износа ее рабочей поверхности. Многочисленные исследования показали, что при этом наиболее правильно Гp определять из условия максимума рейсовой скорости проходки ур.

Для определения ур можно применять приближенное выражение

уp =---------д------. (6.21)

Исследуя функцию на максимум, получаем при dvр/dtб = 0 dhPд №д

dtб Гр + fп + fсп

Так как dhPд/dtб = ум, то

^м = Vр. (6.22)

Следовательно, с технической точки зрения долото на забое следует держать до тех пор, пока механическая скорость проходки, уменьшаясь, не станет равной рейсовой скорости проходки. Это и будет рациональное время эффективной работы долота на забое Гр.

203

В этом случае при определении времени подъема долота можно руководствоваться механической скоростью проходки. Долото нужно поднимать после того, как механическая скорость проходки, уменьшаясь с течением времени, достигнет значения

vм = k0vм ср,

где vм ср – средняя механическая скорость проходки, м/ч; k0 – коэффициент, определяемый опытным путем.

Значение k0 зависит от соотношения между tб и tсп + tп и удовлетворяет условию 0 < k0 < I.

После сработки долота (или по иным причинам) колонну бурильных труб приподнимают на несколько метров и промывают до тех пор, пока плотности бурового раствора, закачиваемого в скважину и из нее выходящего, не сравняются. В это время подготовляют для спуска в скважину новое долото и проверяют состояние оборудования и спускоподъемного инструмента. Затем поднимают инструмент из скважины.

Знакомства

для

настоящих

нефтяников

и

газовиков

Я:

Ищю:

от лет

до лет

В данной библиотеке представлены книги исключительно для личного ознакомления.
Запрещено любое копирование не для личного использования, а также с целью использования в коммерческих целях.
В случае претензий со стороны авторов книг/издательств обязуемся убрать указанные книги из перечня ознакомительной библиотеки.
Копирование, сохранение на жестком диске или иной способ сохранения произведений осуществляются пользователями на свой риск.
Басарыгин Ю.М., Булатов А.И., Проселков Ю.М.
Бурение нефтяных и газовых скважин

Глава № 6

Навигация

Аннотация-Оглавление-Предисловие-Список литературы

Глава 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Скачать эту главу в формате PDF

Всё про нефть и газ / Литература(каталог книг)

по всем вопросам и предложениям Вы можете обращаться на neft-i-gaz@bk.ru Администрация сайта