ВСЁ ПРО НЕФТЬ И ГАЗ

Комплексный интернет- портал посвещённый нефти и газу

Посмотрите также другие разделы нашего сайта!!!

Литература
много книг по нефти и газу

Программы нефтегазового комплекса

Медиафайлы про нефть

Анекдоты про нефтяников

Знакомства для буровиков

Всё про нефть и газ / Литература(каталог книг)

Басарыгин Ю.М., Будников В.Ф., Булатов А.И., Проселков Ю.М.
Технологические основы освоения и глушения нефтяных и газовых скважин

Глава № 9

Навигация

Аннотация-Оглавление-Список литературы

Глава 1 2 3 4 5 6 7 8 9 10

ВНИМАНИЕ

В текстах книг представленных на сайте в интернет формате очень много ошибок, не читаются рисунки, графики разбиты, это связанно с некачественной перекодировкой конвекторов из PDF формата и HTML.

Если Вам необходимы качественный текст с рисунками и графиками - то скачиваите книги с нашего сайта в формате PDF.

ссылка для скачивания книги или главы в формате PDF находится внизу страницы.

В данной библиотеке представлены книги исключительно для личного ознакомления.
Запрещено любое копирование не для личного использования, а также с целью использования в коммерческих целях.
В случае претензий со стороны авторов книг/издательств обязуемся убрать указанные книги из перечня ознакомительной библиотеки.
Копирование, сохранение на жестком диске или иной способ сохранения произведений осуществляются пользователями на свой риск.

анекдоты

программы

истории

ГЛУШЕНИЕ СКВАЖИН

Глушение скважин - это технологический процесс, в результате которого создается противодавление на пласт и прекращается добыча пластового флюида. Он предшествует капитальному и текущему ремонту скважин.

9.1. ТРЕБОВАНИЯ К ЖИДКОСТЯМ ГЛУШЕНИЯ СКВАЖИН

После капитального или текущего ремонта почти во всех скважинах отмечается снижение продуктивности вследствие загрязнения продуктивного пласта при глушении и собственно ремонте. Одна из основных причин снижения продуктивности скважин после ремонта — несоответствие применяемых жидкостей глушения (ЖГ) геолого-техническим условиям. Жидкости глушения должны подбираться из условий нанесения минимального ущерба продуктивному пласту и обеспечения проведения необходимых операций по ремонту и измерениям в скважине. Воздействие жидкости глушения на продуктивный пласт происходит с помощью двух механизмов: химического и механического. Примером смешанного или химического воздействия является процесс глинизации пласта и его закупорки жидкостями. Механическое воздействие на пласт проявляется в закупорке пласта по стенке скважины и в призабойной зоне или в нарушении структуры пласта.

Основные требования к жидкостям глушения состоят в том, чтобы они имели плотность, достаточную для обеспечения необходимого противодавления на пласт, обеспечивали максимальное сохранение коллекторских свойств пласта, регулируемость технологических свойств (взрыво- и пожаробе-

492

9

зопасность, термостабильность) и успешное проведение различных операций, а также были технологичными в приготовлении и использовании. Главные компоненты жидкостей глушения: жидкость (фильтрат), закупоривающие частицы, добавки различного назначения. Для низкопроницаемых коллекторов используются жидкости без твердой фазы.

Для выбора жидкости глушения учитывают ряд факторов: снижение набухания глин, температура замерзания, коррозионная стойкость, совместимость с пластовыми жидкостями, плотность, возможная опасность для персонала и окружающей среды.

Выбор концентрации добавок солей к воде для приготовления различных жидкостей глушения с целью достижения ингибирования глин рекомендуется осуществлять в следующих пределах: 5-10 % NaCl, 1-3 % СаС12, 1-3 % КС1.

Плотность растворов (в г/см3) может составлять: NaCl 1,0-1,17; СаС12 1,0-1,39; смесь NaCl и СаС12 1,2-1,4; КС1 1,0-1,16; смесь СаС12 и СаВг2 1,4-1,81. Верхний предел плотности устанавливается исходя из условий растворимости при рабочей температуре или из условий замерзания, или из условий создания необходимого противодавления на пласт. Жидкость глушения может быть плохо совместимой с пластовыми водами. В этом случае есть опасность снижения проницаемости из-за выпадения осадка в пористой среде. Скорость коррозии труб жидкостями глушения считается приемлемой и безопасной, если составляет 0,125 мм в год. Наиболее распространенной в настоящее время жидкостью глушения является раствор NaCl. Значительно реже в качестве жидкости глушения используют растворы СаС12.

Однако использование этих материалов не обеспечивает сохранения, а тем более улучшения коллекторских свойств продуктивных пластов, представленных терригенными отложениями. В условиях низкопроницаемых заглинизированных коллекторов применение упомянутых жидкостей глушения приводит к значительному снижению продуктивности скважин после глушения, увеличению продолжительности процесса вызова притока после ремонта.

В качестве рабочих жидкостей для заканчивания и ремонта скважин наряду с растворами NaCl, СаС12 предлагается использовать растворы КС1, Na2S04, Na2C03, NaHC03, СаВг2, К2С03 и их смеси, а также водный раствор К3Р04.

Как показали проведенные в б. ВНИИКРнефти исследования для искусственных кернов (спрессованная смесь песка, 0,5 % глины, 3 % мела), значения коэффициента восстановле-

493

ния проницаемости (3 для растворов КС1, Na2S04, Na2C03, NaHC03, К2Р04 составляют 95-100 %, для СаВг2 - до 85 %, для К2С03 - 115-120 %.

Таким образом, из названных реагентов только раствор К2СОэ является обрабатывающим, способным не только восстанавливать, но и улучшать проницаемость глинистого песчаника-коллектора.

Причиной этой способности у раствора К2СОэ объясняется высокой активностью ионов калия и относительно небольшим (например, по сравнению с ионом хлора у КС1) ги-дратным числом у иона СОэ. Поэтому при ионообмене с глинистыми минералами К2СОэ образует более тонкие (чем КС1) гидратные оболочки на глинистых частицах, в результате чего обеспечивается повышение пористости и соответственно проницаемости заглинизированных песчаников.

К утончению гидратных оболочек глинистых частиц приводит их обработка водными растворами комплексонов. В частности, в 1,6-1,7 раза уменьшается коэффициент набухания глин, обработанных 1%-ным раствором НТФ, по сравнению с коэффициентом набухания глины в воде.

Обработке неглубоких водозаборных скважин с помощью растворов различных реагентов: гидразина соляно-кислотного (N2H4-2HC1), гидразина сернокислого (N2H2-H2S04), перекиси водорода (Н202), смесей N2H2-H2S04 и H202, Na2C03 и Н202, NH4HC03 и H202, (NH4)2C03 и H202, N2H2-H2S04 и NaHS04 (бисульфат натрия) (по 260 скважинам сельскохозяйственного водоснабжения) свидетельствуют об увеличении их дебитов в среднем на 46 %. При этом следует иметь в виду, что обработка реагентами осуществляется в комплексе с виброобрат-кой скважин низкочастотными колебаниями или вакуумным воздействием.

В качестве жидкостей глушения используются пена, метанол, дизтопливо, сырая нефть, эмульсионные растворы, минерализованная различными добавками (КС1, NaCl, СаС12, СаВг2) вода.

Известно также использование твердых частиц, растворимых в кислотах, в качестве добавок к жидкостям для закан-чивания скважин. Кольматация призабойной зоны пласта твердыми частицами является одним из основных факторов потери ее проницаемости. Вероятно, отмеченное использование кислоторастворимых частиц в составе жидкостей глушения в случаях проведения ремонтных работ с наличием твердой фазы в интервале продуктивного пласта (например, при проведении перфорационных работ) является одним из воз-494

можных путей сохранения естественной проницаемости при-забойной зоны.

В качестве жидкости глушения предложено использование электролитов (из группы Na\ K+, Ca++, Zn++ , Br+ и их смесей), неионных полимеров, растворимых в воде и малочувствительных к катионам (типа гидроксиэтилцеллюлозы) и кис-лоторастворимой добавки меда (диаметр частиц равен 1/3 диаметра под коллекторы). Жидкость готовится в следующем порядке: рассол (40 г/л), полимерный раствор (1,5-7 г/л) совместно с СаСОэ (25-100 г/л). Плотность жидкости регулируется от 0,9 до 1,8 г/см3 путем ввода дизельного топлива или СаСОэ с электролитом.

Для глушения используют широкий спектр флюидов, рассолы (КС1, NaCl и др.), эмульсионные растворы, сырую нефть, дизельное топливо, метанол, природный газ, пену, воздух.

Нефть и нефтеэмульсионные растворы могут с успехом применяться в качестве жидкостей глушения в пластах с во-дочувствительными глинами и в зависимости от геолого-технических условий. Однако повышенная пожароопасность и сложность приготовления являются причинами, препятствующими их широкому внедрению. Известно и применение для глушения скважин с водочувствительными глинами в коллекторе растворов на нефтяной основе, представляющих собой смеси окисленного битума, органических кислот, щелочи, стабилизатора и дизельного топлива. Битум диспергируется до коллоидного состояния в дизельном топливе и служит для снижения фильтратоотдачи. С той же целью используется и разновидность раствора на нефтяной основе — меловая эмульсия. Значительного распространения эти растворы не нашли по указанным причинам.

Если при глушении скважины, вышедшей в ремонт, применять жидкость, обладающую одновременно свойствами за-давочной жидкости (регулируемые плотность, вязкость, статическое напряжение сдвига) и растворяющей способностью к парафинистым и асфальтосмолистым отложениям, то операцию обработки призабойной зоны можно совместить с подземным ремонтом. Такой технологической жидкостью является обратная эмульсия, содержащая в дисперсионной среде необходимое количество углеводородного растворителя, способного отфильтровываться без разрушения эмульсии.

Эффективность обработки призабойной зоны продуктивного пласта обратной эмульсией, обладающей растворяющи-

495

ми свойствами, превышает эффективность обработки пласта чистым углеводородным растворителем.

Жидкости глушения на основе водных растворов солей, хотя и считаются растворами без твердой фазы, на практике содержат твердую фазу, представляющую собой механические примеси в воде затворения, в связи с тем, что:

твердые частицы могут содержаться в воде, когда она берется из рек и водоемов;

может быть загрязнен товарный продукт — соль;

примеси могут проникать в воду из поверхностных емкостей и оборудования;

возможны твердые частицы физико-химического происхождения из-за осаждения некоторых соединений непосредственно в скважине.

Механические примеси существенно снижают проницаемость пористой среды. При фильтрации воды через песчаник проницаемостью 0,45 мкм2, даже тщательно очищенная вода вызывает снижение проницаемости: вода, очищенная через 2-мкм хлопковый фильтр, снижает проницаемость на 20 %. В промысловых условиях вода с содержанием твердых частиц 10-15 мг/л считается "чистой”, однако такая вода способствует снижению проницаемости упомянутого песчаника на 90 %. При обратной фильтрации восстановление проницаемости составляет всего 30 %. Для достижения требуемой чистоты жидкостей глушения применяют соответствующие системы их очистки.

Наиболее податливыми к разрушению полимерами, применяемыми в промысловой практике, являются материалы на основе целлюлозы: гидроксиэтилцеллюлоза, карбоксиметил-целлюлоза, крахмал, гуаровая смола и некоторые биополимеры. Для их последующего разрушения, удаления и очистки скважины применяются кислоты, а также окисляющие полимеры, уменьшающие вязкость. Среди полимеров целлюлозы гидроксиэтилцеллюлоза при разрушении образует минимальное количество нерастворимых остатков, в то время как крахмал и гуаровая смола образуют нерастворимые остаточные продукты в количествах, которые могут заметно коль-матировать коллектор. Нерастворимые остатки полимеров разрушаются термическим способом либо тщательной промывкой пласта.

В б. ВНИИКРнефти разработана ЖГ для скважин месторождений Главтюменнефтегаза на основе водного раствора смеси хлорида и нитрата кальция. Жидкость плотностью 1,60 г/см3 кристаллизуется при минус 8—16 °С; плотностью 496

1,45 г/см3 - ниже 50 °С. Вязкостные и фильтрационные свойства жидкости до температуры 100 °С можно регулировать добавкой крахмального реагента, а до 150 °С — оксиэ-тилцеллюлозы. Рассол может быть использован при глушении скважин, склонных к нефтегазопроявлениям и поглощению ЖГ. Ингибирующая способность жидкости по отношению к глинистым минералам продуктивного пласта на порядок выше, чем у ингибированных буровых растворов соответствующей плотности, включая известные составы обратных эмульсий.

Разработаны рассолы на основе бромсодержащих солей плотностью выше 1,60 г/см3. Наиболее перспективным компонентом таких жидкостей считается бромид кальция. Растворы на его основе могут достигать плотность 2,20 г/см3 ( в смеси с другими солями); они коррозионно-инертны, малотоксичны.

В качестве ЖГ плотностью до 1,81 г/см3 можно использовать раствор для приготовления ЖГ, который, кроме бромида кальция и воды, содержит гидроксид кальция и свободный аммиак. Эти добавки обеспечивают снижение коррозионной активности и повышение термостойкости жидкости.

Б. ВНИИКРнефтью совместно с ВНИИйодобромом разработаны составы рассолов на основе смеси бромида кальция с другими его солями. Например, если плотность 60%-ного раствора бромида кальция при температуре 25 °С 1,86 г/см3, то плотность раствора из смеси бромида кальция (48 %) и хлорида кальция (14,3 %) равна 1,87 г/см3. Наибольшая плотность (2,20 г/см3) у водного раствора бромида кальция и бромида цинка. Смешение двух-трех солей позволяет не только повысить плотность рассолов, но и на 20 — 25 % снизить расход бромида кальция. Растворы на основе бромида кальция обладают высоким ингибирующим действием по отношению к глинистым минералам продуктивного пласта.

Преимущества рассолов повышенной плотности по сравнению с утяжеленными глинистыми растворами были подтверждены в промышленных условиях как при перфорации скважин, так и при их глушении.

Для регулирования технологических свойств рассолов на основе бромида кальция были апробированы аминодекстрин, модифицированный крахмал, оксиэтилцеллюлоза. Обработка раствора бромида кальция плотностью до 1,50 г/см3 амино-декстрином и модифицированным крахмалом обеспечивает регулирование вязкости и фильтрационных свойств при температуре до 100 °С. Свойства рассолов плотностью 1,50-

497

1,80 г/см3 эффективно регулируются добавкой модифицированного крахмала. Свойства рассола плотностью до 1,70 г/см3 изменяются добавкой оксиэтилцеллюлозы. Этот реагент термостабилен до температуры 150 °С; расход его значительно ниже, чем двух предыдущих. Значения фильтрации рассолов на основе бромида кальция хорошо регулируются комбинированным вводом оксиэтилцеллюлозы и карбонатов (мел, известняк, сидерит).

Сокращение потерь (ухода) жидкости глушения в результате поглощения в пласт может быть достигнуто добавкой растворимых твердых частиц, создающих временно корку на стенках скважины. Корка не дает возможности загрязнить пласт и в то же время позволяет быстро очистить призабой-ную зону скважины, нанеся минимальный ущерб проницаемости пласта.

В практике работ применяют растворимые твердые частицы двух типов: растворимые в кислотах и нефти. К первому типу относятся уже упомянутый карбонат кальция (мел) и карбонат железа (сидерит), применяемые для борьбы с поглощениями солевых растворов. Эти добавки предотвращают проникновение в пласт нерастворимых твердых частиц. Наиболее широко применяют мел, так как он в 30 раз быстрее растворяется в кислоте, чем сидерит. Ко второму типу относятся смолистые вещества, которые применяют там, где нет необходимости или противопоказано проводить соляно-кислотные обработки, так как эти вещества растворяются в сырой нефти и газоконденсате.

Растворимые в нефти смолы используют совместно с полимерами на вискозной основе, которые сводят до минимума потери жидкости при глушении и ремонте скважин. Нефте-растворимые смолы образуют на стенке скважины тонкую фильтрационную пленку, которая не обладает естественным структурным натяжением, быстро и полностью разрушается при движении пластовых флюидов к забою скважины под действием депрессии на пласт. Нефтерастворимые смолы могут применяться при всех видах солевых растворов и остаются стабильными при температуре на забое скважины до 120-150 °С.

Выводы:

на проницаемость терригенных заглинизированных коллекторов существенное влияние оказывает химическая природа жидкости глушения;

определяющим фактором в проблеме сохранения коллек-торских свойств пласта, наряду с химической природой жид-498

кости глушения, является наличие в ней механических примесей с диаметром частиц более 2 мкм;

наиболее технологическими и безопасными в применении из-за простоты приготовления и невзрывоопасности являются солевые растворы на водной основе без твердой фазы;

разработка новых эффективных составов жидкостей глушения может осуществляться на основе водных растворов химических соединений с повышенными ингибирующими способностями по отношению к глинистой фазе коллектора, а также растворов на этой основе, содержащих растворимую твердую фазу;

применение новых составов жидкостей глушения на водной основе “без твердой фазы" должно сопровождаться очисткой (раствора, используемого оборудования, скважины), при которой в призабойную зону исключается проникновение нерастворимых твердых мехпримесей с диаметром частиц 2 мкм.

9.2. ВЫБОР СОСТАВОВ

ЖИДКОСТЕЙ ГЛУШЕНИЯ

Проблема наиболее полного использования добывных возможностей скважин в последние годы становится все более актуальной, так как условия разработки месторождений углеводородов усложняются в связи с вводом в эксплуатацию низкопродуктивных залежей. Основными условиями обеспечения наиболее полного решения этой задачи являются сохранение и улучшение коллекторских свойств пласта в процессе воздействия на него при заканчивании и ремонте скважин. Решение этой задачи не может быть обеспечено без правильного выбора солевых составов, используемых в качестве жидкостей глушения и перфорации. Необходимые требования к ним следующие: сохранение и увеличение естественной проницаемости продуктивного пласта; плотность, обеспечивающая безопасность проведения работ; низкая коррозионная активность; отсутствие механических примесей с диаметром частиц более 2 мкм; экологическая безопасность. Однако наряду с соблюдением всех перечисленных требований, определяющим при выборе является положительное влияние на проницаемость продуктивного пласта. Таким образом, наиболее перспективными для использования в качестве жидкостей глушения и перфорации являются

499

солевые растворы без твердой фазы, обеспечивающие инги-бирование глинистых минералов и сводящие к минимуму потерю проницаемости, связанную с набуханием глин.

Результаты изучения данной проблемы приводят к следующим выводам.

1. В качестве жидкостей глушения и перфорации, не снижающих проницаемость терригенных заглинизированных коллекторов, могут быть рекомендованы солевые составы без твердой фазы (не содержащие части размером более 2 мкм) на основе поташа (К2СОэ) с добавками комплексонов (НТФ, ОЭДФ), так как они не только сохраняют, но и увеличивают естественную проницаемость кернового материала.

2. Солевые составы на основе поташа и комплексонов отличаются низкой коррозионной активностью.

3. Температура замерзания растворов поташа обеспечивает возможность круглогодичного использования их в качестве технологических жидкостей глушения.

9.3. ТЕХ НОЛГИЯ ГЛУШЕНИЯ СКВАЖИН ПЕНАМИ

При низких пластовых давлениях, составляющих менее половины гидростатического, для предотвращения загрязнения призабойной зоны положительные результаты дает применение трехфазных пен в качестве рабочих жидкостей для глушения скважин. Для примера рассмотрим их применение в сложных геолого-физических условиях Кубани.

Для горно-геологических условий месторождений Краснодарского края, характеризующихся большими глубинами залегания продуктивных горизонтов, высокими забойными температурами, большим скоплением в стволах скважин пластовых флюидов (вода, газоконденсат), возможностью частичного проникновения трехфазных пен в пласт и другими факторами, потребовалась разработка усовершенствованной технологии глушения скважин, предусматривающая применение, кроме трехфазных пен, газоконденсата и двухфазных пен для разрушения пены в призабойной зоне при освоении скважин и удаления жидкости из ствола скважин при их глушении.

Кроме того, для уменьшения отрицательного влияния трехфазной пены на призабойную зону из-за высоких пластовых температур потребовалось создание методики расчетов 500

процессов глушения, а также разработка табличных справочных материалов для упрощения использования разработанной технологии в промысловых условиях.

Пены представляют собой дисперсные системы, состоящие из ячеек — пузырьков газа, разделенных пленкой жидкости. Газ рассматривается как дисперсная фаза, а жидкость — как непрерывная дисперсионная среда. Разделяющие пузырьки газа жидкие пленки образуют в совокупности пленочный каркас, являющийся основой пены.

Для получения пены в системе жидкость— газ обязательно присутствие поверхностно-активных веществ. Молекула ПАВ состоит из гидрофобной части и способного гидратироваться остатка - гидрофильной группы. Адсорбируясь на поверхности раздела жидкости с газом (воздухом), молекулы ПАВ образуют своеобразный поверхностный слой, в котором они располагаются определенным образом. Ориентация происходит так, что гидрофильтная часть молекулы находится в водной фазе, а гидрофобная часть направлена в сторону газовой среды.

Добавка к жидкости ПАВ приводит к снижению поверхностного натяжения, которое представляет собой работу, необходимую для образования единицы новой поверхности. Механизм образования пузырька пены сводится к образованию адсорбционного слоя на межфазной поверхности газообразного включения в жидкой среде, содержащей ПАВ. При выходе пузырьков на поверхность раствора он окружается двойным слоем ориентированных молекул.

Структура пен определяется соотношением объемов газовой и жидкой фаз, и в зависимости от этого соотношения ячейки пены могут иметь сферическую или многогранную форму.

Пенную систему характеризуют следующие свойства:

пенообразующая способность раствора ПАВ - объем или высота столба пены, которая образуется из определенного объема пенообразующей жидкости при соблюдении заданных условий в течение данного времени;

кратность пены — отношение объема пены к объему пенообразующей жидкости, пошедшей на ее образование;

устойчивость или стабильность пены - время существования (жизни) элемента пены (отдельного пузырька, пленки) или определенного ее объема;

плотность пены изменяется в широких пределах и зависит от плотности пенообразующей жидкости, степени аэрации а0 и условий, в которых она определяется (давление, температура);

501

коэффициент эжекции V0 - объем газа, приходящийся на единицу объема пенообразующей жидкости при давлении смешанного потока (в случае применения эжектора);

пластическая прочность рт или статическое напряжение сдвига Q(x);

прочность предельно разрушенной структуры, определяемая на коническом пластометре или приборе СНС-2;

дисперсность пен, которая может быть задана средним размером пузырька, распределением пузырьков по размерам или поверхностью раздела раствор — газ в единице объема пены.

9.3.1. У ПРУГИЕ СВО ЙСТВА ПЕН ПРИ ЦИРКУЛЯЦИИ В СКВАЖИ НЕ

Практика проведения работ по глушению и освоению скважин с применением трех- и двухфазных пен показывает, что после прекращения закачки пены в скважину происходит ее перелив как из трубного пространства, так и межтрубного. Известно, что в результате перелива забойное давление может быть снижено более чем на 50 % по сравнению с давлением, которое наблюдалось при циркуляции (В.А. Амиян, Н.П. Васильева).

Причины перелива пены из скважины после прекращения циркуляции следующие:

упругое расширение пены в результате снижения давления на значение гидравлических потерь на трение;

температурное расширение пены в результате прогрева до температуры окружающих скважину горных пород;

дополнительное температурное расширение пены за счет получения дополнительного количества теплоты, компенсирующего снижение температуры в результате уменьшения давления.

Все эти процессы происходят одновременно, и перелив пены прекращается при условии равенства суммарной энергии, приводящей к увеличению объема пены, потерям энергии на трение в результате движения пены.

Исходя из этих положений, с целью предотвращения перелива пены из скважины технология глушения скважин должна предусматривать закачку определенного количества бурового раствора как в межтрубное пространство, так и в трубное. Гидростатическое давление столба бурового раствора должно компенсировать давление, развиваемое пеной, в

502

результате температурного, упругого и дополнительного температурного расширения.

В общем виде это может быть выражено следующей зависимостью:

Ргр = Ртр п + Ртра + Pv

где ргр — необходимое гидростатическое давление столба бурового раствора для предотвращения перелива пены; ртр п — потери давления на трение при переливе пены; а — коэффи-циент запаса энергии пены; р, — давление, создаваемое пеной в результате температурного расширения.

Значение ргр определяется на основе промысловых данных по технологии глушения.

9.3.2. АЁЕВ IEA iAltJ IA IDIIEOAA I INOU IIDECO IE NDAaC

Закупоривающие свойства пен объясняются следующими физико-химическими процессами, происходящими в призабойной зоне при проникновении пены в пласт:

разрушением гидратных слоев на твердой поверхности и частичной ее гидрофобизацией в результате адсорбции ПАВ;

прилипанием пузырьков пены к гидрофобизованной поверхности поровых каналов;

проявлением эффекта Жамена;

электровязкостными свойствами пен;

увеличением межфазной удельной поверхности при фильтрации пены через пористую среду.

Таким образом, можно сделать вывод, что пена проникает в пласт на небольшую глубину и для дальнейшего ее проникновения необходимо приложить значительные градиенты давления.

Наряду с высокими закупоривающими свойствами устойчивые пены обладают и низкой водоотдачей, а это значит, что и проникновение фильтрата в пласт будет значительно меньше, чем при использовании обычных жидкостей; водоотдача пен в 3 — 6 раз меньше, чем водоотдача исходных буровых растворов.

9.3.3. ОАО I IE IAEJ3 АЁО0А1ЕВ NEAA/EE I

odAooaqiie iAiie

Исходя из рассмотренных свойств трехфазных пен (закупоривающие свойства пен, изменение гидроста-

503

тического давления на забое заполненной пеной скважины, водоотдача пен и др.), а также промысловых исследований разработана следующая технология глушения ими скважин применительно к горно-геологическим условиям разработки газовых и газоконденсатных месторождений Краснодарского края.

В остановленную скважину через межтрубное или трубное пространство закачивается объем пены, достаточный для создания давления, равного (0,5+0,7)!пд (рис. 9.1, а). Для того чтобы предотвратить проникновение пены в продуктивный пласт, сумма давления столба пены !гп и давления на устье скважины !6 должна равняться пластовому давлению !пд:

!заб = !гп + !б = !пл- (9-1)

После закачки пены скважина закрывается на время х, достаточное для ее прогрева. При этом давление на устье скважины поддерживается постоянным (!6 = const), а давление на забое в результате структурообразования и других факторов снизиться до значения (рис. 9.1, б)

Рзаб = Рб + Ргп + 4H16(T) , (9.2)

D-d

гАе !б — давление на головке скважины; !гп — гидростатическое давление столба пены высотой Н1; 9(х) — статическое напряжение сдвига пены к моменту времени х; D — внутренний диаметр эксплуатационной колонны; d - наружный диаметр НКТ.

К этому времени газ может частично поступить в ствол скважины и оттеснить пену из призабойной зоны. Через промежуток времени как в трубное, так и в межтрубное пространство закачиваются объемы бурового раствора, необходимые для создания нужного давления.

Суммарное гидростатическое давление столбов пены !гп и бурового раствора !ф при полностью разрушенной структуре должно превышать пластовое !пд в 1,2 раза, т.е. (рис. 9.1, в)

!гп + !гр = 1,2 !пд. (9.3)

Вследствие того, что не все давление, создаваемое столбом бурового раствора, передается на забой и что произойдет “зависание” бурового раствора и пены, фактическое давление (рис. 9.1, е)

Ут'> ,

D-d D-d

504

< рпд. (9.4)

Несмотря на то что к моменту времени х[ рза6 ? рпд, движения пены и бурового раствора не произойдет, так как после разрушения структуры пены и раствора рза6 будет равно 1,2рпд.

После проведения необходимых ремонтных работ и спуска НКТ проводится освоение скважины двухфазной пеной. Перед освоением в межтрубное пространство закачивается газоконденсат. Закачка газоконденсата преследует следующую цель. Если в процессе глушения и проведения ремонтных работ пена практически не контактирует с пластом, то в процессе освоения картина меняется.

Забойное давление в момент восстановления циркуляции (рис. 9.1, д)

Р1Пб = Ргп + Рт + 1O1()-------2J±)>P^, (9.5)

v d d

т.е. создаются условия для контактирования пены с продуктивным пластом. Несмотря на то что время этого контакта незначительное, пена все-таки может проникнуть в пласт на незначительное расстояние. Для разрушения пены, попавшей в пласт, и пены в стволе скважины производится закачка газоконденсата (рис. 9.1, г).

С целью широкого промышленного внедрения разработанной технологии глушения и упрощения расчетов ее проведения в промысловых условиях составлена и утверждена Инструкция по технологии глушения и освоения скважин на месторождениях предприятия “Кубаньморнефтегазпром”, находящихся на различной стадии разработки (рпд = 0,1н-0,8рг).

Данной Инструкцией рекомендуется следующая последовательность проведения работ.

На глушение скважины составляет план. В плане указываются цель работ, краткие геолого-технические данные о скважине, необходимые материалы и техника, технология проведения работ и мероприятия по технике безопасности безаварийному ведению работ.

Производится исследование скважины с целью определения эффективности проводимых работ. Приготавливается пенообразующая жидкость. На приготовление пенообразую-щей жидкости объемом 1 м3 необходимо 100-125 кг бентонитовой глины и 10-15 л 30-40%-ного водного раствора сульфанола. Объем бурового раствора должен быть в 1,5 раза больше, чем необходимо для приготовления пены и жидкости для продавки пены. Приготовленный буровой раствор из

506

бентонитовой глины (без сульфонола) оставляется на сутки для полной диспергации глины. Через сутки буровой раствор перемешивается цементировочным агрегатом и к нему добавляется расчетное количество сульфонола. После добавления сульфонола раствор вновь перемешивается по закрытому циклу в течение 1 — 1,5 ч.

Рассчитываются необходимые технологические параметры для проведения операции.

Определяется объем пенообразующей жидкости, необходимой для приготовления пены из расчета, чтобы ее столб в условиях скважины создал давление (0,5 — 0,7) от пластового по формуле

10(0,5 + 0,7)р„, Vu ж =--------^ q + Узум - (9-6)

Рпж

где Vn ж - необходимый объем пенообразующей жидкости, м31 Рпл — пластовое давление, МПа; рп ж — плотность пенообразующей жидкости, г/см3; q - объем 1 м ствола скважины, м3; Узум - объем зумпфера, м3.

Определяются объемы бурового раствора, необходимые для закачки в трубное и межтрубное пространство с целью предотвращения перелива пены:

для труб

= Щ0,5+ °,7)Рдл qrt; (9.7)

Рпж

для межтрубного пространства

Узатр = Щ0,5+ °'7)Рпл q2, (9.8)

Рпж

где qx - объем 1 м труб, м3; q2 - объем 1 м межтрубного пространства, м3.

Расчеты проведены для колонн диаметром 0,14, 0,146 и 0,168 мм при различных диаметрах НКТ и пластовых давлениях, а также при различных давлениях, создаваемых пеной и буровым раствором. Плотность пенообразующей жидкости принята 1,06 г/см3, как наиболее часто применяемая на практике.

Затем определяется необходимая степень аэрации пены в нормальных условиях по формуле

=------(l,2pnA+p0)Z0r0------ (g g)

p0Zr[l + ifn(l,2pnA+Po)]

507

Точное время прогрева пены определяется для каждого месторождения путем глубинных замеров температуры и давления в процессе глушения скважины и обработки результатов. Практически это время составляет 8- 10 ч.

Рассчитывается режим работы агрегатов. Приготовление пены и закачка ее в скважину осуществляются с помощью эжектора. Коэффициент эжекции эжектора

Рагр - Р

щ = 0,85Гагр " -1, (9.11)

где р — давление на входе в эжектор; р — давление газа

(воздуха);

Рем — давление закачки пены, рсм = ргод +(1 +2);

Ргол — давление на головке остановленной скважины.

Уравнение справедливо, когда ргод = const и когда расход газа неограничен, т.е. в случае использования газа из шлейфа. Однако с учетом того, что в шлейфе всегда находится пластовая вода и газоконденсат, на практике источником газа (воздуха) является компрессор УКП-80, подача которого составляет 133 л/с и не может полностью обеспечить стабильную работу эжектора. Поэтому, исключая начальный период закачки пены, эжектор работает как смеситель. При этом подача компрессора практически остается постоянной, а производительность агрегата (в л/с) зависит от давления на входе в сопло и определяется выражением

Оагр = К11^Рр,

где ц — коэффициент, ц = 0,9; /р1 — площадь сечения сопла, м2| РР — давление на входе в сопло, МПа.

Исходя из этого и зная давление на входе в эжектор, можно определить и производительность агрегата. Зная производительность агрегата Qarp и подачу компрессора Qr, можно найти степень аэрации.

Для удобства расчетов построены зависимости степени аэрации а0 от давления на входе в смеситель (эжектор) для диаметров сопла 4,5 и 5,6 мм( рис. 9.3).

Необходимая плотность пены при заданных степени аэрации и давлении закачки определяется из графика (рис. 9.4).

Производятся подготовительные работы. Глушение осуществляется с использованием цементировочного агрегата, компрессора и эжектора. Для регистрации технологических параметров используется модернизированная станция СКЦ-2М.

509

Рис. 9.3. Зависимость степени а0 пены от давления на

аэрации „ _____

выходе в эжектор р:

1, 2 — диаметр сопла венно 4,5 и 5,6 ММ

соответст-

Перед глушением осуществляется обвязка эжектора: выход эжектора через станцию контроля цементирования подсоединяется к трубному (межтрубному) пространству, вход через обратный клапан — к цементировочному агрегату, а приемная камера эжектора через обратный клапан — к компрессору.

Рис. 9.4. Зависимость степени аэрации aft пены от давления р при различных значениях плотности р

510

Соединительные линии опрессовываются на давление, в 1,5 раза превышающее ожидаемое рабочее.

На межтрубном и трубном пространстве устанавливаются манометры.

Скважина отключается от коллектора.

С целью удаления жидкости (вода, газоконденсат), скопившейся на забое, перед глушением скважину промывают двухфазной пеной; для этого через скважину прокачивают 3-5 м3 пенообразующей жидкости (0,7-1%-ный водный раствор ПАВ — сульфонол), превратив ее в пену плотностью 100-300 кг/м3 (при давлении закачки). Агрегат ЦА-320 работает при минимально возможной частоте с одновременной работой компрессора.

Производится глушение скважины.

При открытой задвижке на трубном (межтрубном) пространстве через эжектор прокачивается пенообразующая жидкость объемом Уп ж при давлении рзатр. Одновременно с агрегатом работает компрессор.

Плотность закачиваемой в скважину пены должна соответствовать определенной по графику (см. рис. 9.4).

При повышении давления в межтрубном (трубном) пространстве его снижают путем выпуска газа в атмосферу до давления (0,Зн-0,5) рпд.

Закрывают скважину (после закачки необходимого объема пены) на время, необходимое для прогрева пены до температуры окружающих скважину горных пород. В это время через 15-20 мин фиксируется давление в трубном и межтрубном пространстве. Давление в межтрубном (трубном) пространстве поддерживается постоянным, равным (0,3 — 0,5) рпд. В случае его повышения оно периодически снижается путем выпуска газа в атмосферу. По истечении времени, достаточного для прогрева пены, снижают давление на трубном (межтрубном) пространстве путем выпуска газа в атмосферу. Давление снижается до появления на выкиде признаков пены. В трубное (межтрубное) пространство закачивается буровой раствор в объеме, определенном из выражений (9.9) и (9.10). Одновременно производится выпуск газа в атмосферу из межтрубного (трубного) пространства. В межтрубное (трубное) пространство закачивается буровой раствор в необходимом объеме.

Скважина оставляется на 2 — 4 ч в закрытом состоянии. Сбрасываются газовые “шапки” из трубного и затрубного пространства. Производится демонтаж фонтанной арматуры. Осуществляется освоение скважины двухфазной пеной. При-

511

готавливается пенообразующая жидкость (на 1 м3 пенообра-зующей жидкости в воде растворяется 7-10 кг сульфонола). В трубное (межтрубное) пространство закачивается 5-6 м3 газоконденсата (дизельного топлива). Эжектор обвязывается со скважиной, станцией контроля цементирования, цементировочным агрегатом и компрессором. Осуществляется замена жидкости, находящейся в скважине, на двухфазную пену. После резкого снижения давления закачки двухфазной пены, что свидетельствует о ее поступлении в трубное (межтрубное) пространство, расход пенообразующей жидкости снижается до минимально возможного. При снижении давления закачки двухфазной пены менее 5,9 МПа закачку пенообразующей жидкости прекращают. Вытеснение двухфазной пены из скважины осуществляют компрессором. Отрабатывают скважину на факел. Производится исследование скважины.

Промышленное внедрение разработанной технологии глушения скважин показало, что в основном все скважины, которые глушились трехфазными пенами, практически сразу после освоения подключались к газосборным сетям с дебита-ми не ниже доремонтных.

Для исключения снижения проницаемости призабойной зоны при глушении скважин в СевКавНИИгазе разработан состав безглинистой жидкости, которая представляет собой гидрофильную эмульсию.

Жидкость для глушения состоит из сульфитспиртовой барды (38%-ной концентрации) и газоконденсата в объемном соотношении 1:3. Для предотвращения вспенивания раствора при температуре выше 50 °С добавляется 0,2-0,5 % резиновой крошки (по массе к объему газоконденсата).

Параметры эмульсии

Плотность, г/см3..................................................................................... 0,9-0,92

Вязкость по СПВ-5................................................................................. Не течет

Водоотдача, см3/30 мин........................................................................ 1,5 — 3

Статическое напряжение сдвига через 1 мин/10 мин, Па....... 0/0

Суточный отстой, %............................................................................... 0-1

Газоконденсат — углеводородная жидкость плотностью 0,7-0,8 г/см3, добывающая на газоконденсатных месторождениях.

Резиновая крошка — отход шинно-восстановительных заводов. Расчет необходимого количества компонентов эмульсии сводится к следующему.

Допустим, требуется приготовить 1 м3 (1000 л) эмульсии

512

при объемном соотношении ССБ и газоконденсата 1:3. Разделив 1000 на 4 части, получим, что 1 часть равна 250 л. Следовательно, для приготовления 1 м3 эмульсии необходимо взять 250 л ССБ и 750 л газоконденсата.

Количество резиновой крошки определяется из соотношения 750(0,2н-0,5)/100 = 1,5*3,75 кг.

Порядок приготовления эмульсии следующий:

1. Определяется плотность раствора ССБ. Для приготовления эмульсии следует использовать раствор ССБ 37 — 38%-ной концентрации, т.е. плотностью 1,20—1,21 г/см3. Если на скважину завезен раствор ССБ с большей плотностью, то его следует разбавить водой до указанной концентрации. Для подсчета количества воды для разбавления молено использовать данные табл. 9.1. Раствор ССБ плотностью меньше 1,20 для приготовления эмульсии использовать нельзя.

2. Измерить плотность газоконденсата и убедиться, что конденсат не содержит воду. Конденсат, содержащий воду, непригоден для приготовления эмульсии.

3. Резиновую крошку необходимо просеять через сито с ячейками размером 5 мм.

4. Проверить чистоту емкостей, в которых будет готовиться жидкость для глушения, так как примеси отрицательно влияют на качество эмульсии.

5. В чистую емкость последовательно загружают расчетное количество газоконденсата и резиновой крошки. После перемешивания в течение 30 мин добавляется необходимое количество ССБ, и смесь вновь перемешивается до получения однородной массы (примерно 2-2,5 ч). После проверки параметров жидкость готова к применению.

При глушении скважин необходимо контролировать следующие параметры, плотность, вязкость, фильтрацию, статическое напряжение сдвига, суточный отстой.

Таблица 9.1 Содержание сухой ССБ в зависимости от плотности водных растворов

Плот-
Содер-
Плот-
Содер-
Плот-
Содер-
Плот-
Содер-

ность,
жание, %
ность,
жание, %
ность,
жание, %
ность,
жание, %

г/см3

г/см3

г/см3

г/см3

1,05
10
1,13
25,4
1,21
38,6
1,29
51,3

1,06
12
1,14
27,4
1,22
40,2
1,30
52,6

1,07
14
1,15
29,2
1,23
42
1,31
54,3

1,08
16
1,16
31
1,24
43,4
1,32
56

1,09
18
1,17
32,5
1,25
45
1,33
57,5

1,10
20
1,18
34
1,26
46,5
1,34
59,1

1,11
21,6
1,19
35,6
1,27
48,1
1,35
60,6

1,12
23,6
1,20
37,1
1,28
49,7
1,36
61,3

513

Плотность, вязкость, фильтрация и статическое напряжение сдвига определяются стандартными методами, применяемыми для буровых растворов, на приборах АГ-ЗПП, СПВ-5, ВМ-6, СНС-2 соответственно.

Суточный отстой определяют при помощи градуированного цилиндра объемом 100 см3. Хорошо перемешанную жидкость наливают в цилиндр до метки 100 см3 и оставляют в покое. По истечении 24 ч измеряют количество конденсата, отстоявшегося вверху цилиндра, что и выражает суточный отстой.

Плотность изменяется увеличением или уменьшением содержания газоконденсата.

Вязкость регулируется добавлением воды. Эмульсия легко разжижается как пресной, так и минерализованной водой.

9.3.4. ГЛУШЕНИЕ СКВАЖИН С ОДНОВРЕМЕННОЙ ОБРАБОТКОЙ ПРИЗАБОЙНОЙ ЗОНЫ ПРОДУКТИВНОГО ПЛАСТА

В ТатНИПИнефти предложена и внедрена технология глушения скважин с одновременной обработкой призабойной зоны пласта. В качестве жидкости глушения используются жидкости, обладающие растворяющей способностью к асфальтосмолистым и парафинистым отложениям: обратная эмульсия, которая состоит из внешней (дисперсионной) среды, внутренней (дисперсной) фазы и эмульгатора-стабилизатора. Отличительной особенностью данной эмульсии является то, что в составе дисперсионной среды содержится углеводородный растворитель.

Компоненты обратной эмульсии берутся в следующем соотношении (объемная доля): 30-10 % нефти (товарной); 29-27,5 % углеводородного растворителя; 1—2,5 % эмульгатора; 40-60 % водной фазы.

При необходимости в состав готовой эмульсии может быть введен твердый утяжелитель (барит, сидерит, гематит) до 25 % к объему.

Нефть должна быть безводной и желательно маловязкой.

В качестве углеводородного растворителя используется широкая фракция легких углеводородов, получаемая при подготовке нефти на УКПН и называется в промысловой практике дистиллятом. Перед вводом в эмульсию дистиллят должен быть дегазирован.

В качестве эмульгатора используется реагент ЭС-2, приме-

514

няемый для стабилизации гидрофобно-эмульсионных растворов.

В качестве водной фазы может быть использована пластовая вода, содержащая ионы кальция, водные растворы солей СаС12, NaCl, MgCl2 любой концентрации, а также их смеси.

Твердый утяжелитель (барит, сидерит, гематит и т.д.) вводится тогда, когда требуются высокие значения плотности обратной эмульсии. Утяжелитель применяется только кондиционный, т.е. сухой и сыпучий.

Обратная эмульсия обладает лучшими технологическими параметрами при содержании водной фазы 40 — 50 % и содержании углеводородного растворителя во внешней среде не ниже 50 %. Эти параметры могут находиться в следующих пределах: плотность 0,9—1,4 г/см3; условная вязкость 50 — 200 с; статическое напряжение сдвига через 1 и 10 мин соответственно 0,6-1,5 и 0,8-2,5 Па, показатель фильтрации не менее 3 см3/мин, электростабильность 80-200 В; растворяющая способность на уровне чистого дистиллята.

Обратные эмульсии приведенного выше состава, обладающие растворяющей способностью к парафинистым и ас-фальтосмолистым отложениям, могут применяться в скважинах с забойной температурой до 80 °С, а утяжеленные твердым утяжелителем — в скважинах с забойной температурой до 50 °С. Температура застывания обратных эмульсий определяется температурой застывания углеводородной среды.

Сроки хранения обратных эмульсий, содержащих углеводородный растворитель, составляют в промысловых условиях не менее 45 сут.

Технология глушения скважин с одновременной обработкой ПЗП предусматривает использование задавочной жидкости, обладающей растворяющей способностью к асфальто-смолистым и парафинистым отложениям.

Особенность новой технологии глушения - обязательное полное замещение скважинной жидкости на жидкость глушения (обрабатывающий раствор). При выполнении этой операции могут наблюдаться три варианта.

1. Продуктивный пласт обладает достаточной приемистостью. Заменить скважинную жидкость на жидкость глушения (обрабатывающий раствор) на глубину подвески НКТ, затем жидкость под насосом продавить в пласт.

2. Продуктивный пласт “не принимает". Значение пластового давления позволяет допустить НКТ до забоя.

Спустить НКТ до забоя, закачать задавочную жидкость в

515

межтрубное пространство или в трубы и промывкой заменить скважинную жидкость на жидкость глушения.

3. Продуктивный пласт “не принимает". Значение пластового давления не обеспечивает безопасность спуска НКТ до забоя.

Произвести замену скважинной жидкости жидкостью глушения на глубину подвески НКТ. Допустить НКТ до забоя и заменить скважинную жидкость жидкостью глушения во всем объеме.

Пуск скважин в работе после ремонта с использованием технологии глушения с одновременной обработкой приза-бойной зоны пласта производится без освоения и мероприятий, связанных с вызовом притока.

Задавочная жидкость (обрабатывающий раствор) после ремонта откачивается из скважины в систему сбора. Задавочная жидкость, утяжеленная баритом или другими твердыми утяжелителями, откачивается в автоцистерны и используется повторно или возвращается на установку приготовления для регенерации и повторного использования. Рекомендации по подбору скважин, на которых может быть использована данная технология, сводятся к следующему:

1. Технологию глушения скважин с одновременной обработкой призабойной зоны пласта следует применять при производстве подземных (текущих) ремонтов скважин.

2. Технология может быть использована при подземном ремонте скважин со всеми существующими способами добычи нефти.

3. Наибольший эффект от использования данной технологии может быть получен в скважинах, где продуктивный пласт имеет значительную разнородность по проницаемости.

4. Наименьший эффект от использования данной технологии может быть получен на скважинах с обводненностью продукции выше 90 %.

9.3.5. ГЛУШЕНИЕ СКВАЖИНЫ ЖИДКОСТЯМИ БЕЗ ТВЕРДОЙ ФАЗЫ В УСЛОВИЯХ АВПД И СЕРОВОДОРОДА

Жидкости, обеспечивающие необходимые репрессии на продуктивный пласт в условиях АВПД — это концентрированные растворы бромидов цинка и кальция (плотности в пределах 1,7-2,15 г/см3).

516

Одна из особенностей жидкостей, содержащих бромид цинка, заключается в том, что при контакте их с сероводородом происходит образование нерастворимого сульфида цинка, снижение плотности. Предлагаемая технология исключает этот недостаток и позволяет использовать жидкости на основе бромидов цинка для установки и ремонта внутри-скважинного оборудования. Композиция бромид кальция-бромид цинка имеет следующие параметры.

Плотность, г/см3............................................................... 2,1-2,2

Массовая доля, %:

бромид кальция........................................................... 43 — 52

бромид цинка.............................................................. 19 — 28

Водородный показатель раствора.............................. 3,5 — 5,5

Динамическая вязкость, мПа-с, не более................ 70

Композиция бромид кальция - бромид цинка смешивается без ограничения с пресной водой и раствором бромида кальция. При смешивании с пластовой минерализованной водой при низких температурах возможно незначительное выделение менее растворимых солей типа хлорид натрия, хлорид калия, хлорид магния и др.

Физико-химические свойства композиции бромид кальция — бромид цинка и бромид кальция представлены в табл. 9.2.

Растворы бромида кальция — бромида цинка представляют собой истинные растворы. Однако в связи с высокой концентрацией солей в растворе жидкости они не являются истинно ньютоновскими, а проявляют в некоторой степени дилатантные свойства, т.е. с увеличением градиента скорости деформации вязкость в некоторой степени увеличивается, причем этот эффект наиболее заметен при невысоких температурах и в концентрированном растворе. При повышении температуры вязкость жидкостей падает, и эффект далатант-ности уменьшается. То же происходит с разбавлением жидкости.

Для практических расчетов можно принимать жидкости на основе бромидов цинка и кальция за ньютоновские, а в качестве динамической вязкости этих жидкостей - эффективную вязкость при скоростях деформации 400-1300 с-1.

Структурными свойствами жидкости на основе бромидов цинка и кальция не обладают.

У композиции бромид цинка — бромид кальция и жидкостей на ее основе, как у всех растворов электролитов, вследствие объемного расширения при повышении температуры происходит снижение плотности.

517

Таблица 9.2

Физико-химические свойства композиции бромид кальция - бромид цинка и растворов бромида кальция

Химиче-

Кинемати-
Теплоем-
Удельная
Коэффици-
Поверхно-

Температу-

ский сос-
Плот-
ческая
кость (при
электро-
ент
стное
Темпера-
ра начала

Продукт
тав (мас-
ность,
вязкость
35 °С),
провод-
объемного
натяжение,
тура
кристалли-

совая доля,
кг/м3
10"6 м2/с
кДж/кг
ность,
расширения
Ю-3 Н/м
кипения,
зации, °С

%)



Ом/м
, °с-11о-4

°С

Растворы
СаВг
1516
1,816
1,89
21,38
4,67
82,14
112,3
-58,8

бромида
(42,6)







кальция
СаВг2 (48,5)
1613
2,17
2,12
18,10
5,12
87,45
118,2
-50

СаВг
1762
4,59
1,78
11,54
5,67
92,15
130,5
+ 1,0

(56,1)







Композиция
СаВг
2165
22,14*
1,46*
2,42"
12,53
80,82*
155,3
+ 13

бромид
(50,38)







кальция —
ZnBr

1,98"

11,77"*

68,96"

бромид цинка
(21,45)







* При 20
°С.

"При 110 °С.







*" При 90 °С.







Плотность при температуре

р ?20 (912)

1 + PAt

гАе Ргог Pt ~~ соответственно плотность жидкости при температуре 20 °С и t; At — изменение температуры, °С; (3 — коэффициент объемного расширения.

Коэффициент р для растворов плотностью 1,9-2,15 г/см3 равен 3,1-Ю-4 °С~\ для растворов плотностью до 1,9 г/см3 составляет 3,6-10"4 °С-1 (композиция разбавлена раствором бромида кальция).

Растворы композиции бромид цинка - бромид кальция при плотности более 2,10 г/см3 близки к состоянию насыщенных, поэтому они имеют сравнительно высокие температуры начала кристаллизации. По мере разбавления водой (лучше — пресной) температура начала кристаллизации снижается, достигая минимума при плотности 1,80—1,90 г/см3. Разбавление раствором бромида кальция (р = 1,70*1,75 г/см3) дает меньшее снижение температуры кристаллизации. Однако этот способ снижения плотности жидкости предпочтительнее в тех случаях, когда путем разбавления необходимо получить как можно больший объем жидкости требуемой плотности.

Растворы композиции бромид цинка - бромид кальция как электролиты — сильные коррозионно-активные системы (кислотность рН = 3*5). Вместе с тем наличие пассивирующего влияния ионов цинка приводит в некоторой степени к нивелированию их коррозионной агрессивности. Особенно при низких температурах.

Наиболее подходящими ингибиторами коррозии стали в среде композиции бромид цинка — бромид кальция являются ингибиторы ИКБ-4, ХОСП-10, КПИ-3, “Нефтехим”. Сочетание их с фурфуролом (нейтрализатором сероводорода) снижает скорости коррозии на несколько порядков.

При контакте с сероводородом в растворе композиции бромид цинка - бромид кальция образуется сульфид цинка, что приводит к появлению твердой фазы в растворе. При очистке от нее снижается плотность, и система становится трудно управляемой.

Вязкость жидкости без твердой фазы на основе композиции бромид цинка — бромид кальция можно повысить путем растворения в ней модифицированного крахмала.

Для предотвращения попадания значительных количеств бурового раствора в ЖБТФ и уменьшения затрат времени в

519

дальнейшем на ее очистку следует отмыть эксплуатационную колонну от остатков бурового раствора.

Далее необходимо произвести замену бурового раствора на воду обратной промывкой, регулируя дросселем противодавление на устье скважины для обеспечения необходимого превышения над пластовым давлением (или давлением, при котором колонна негерметична). Прямой промывкой закачать в скважину 6-8 м3 моющей жидкости, состоящей из 33 % дизельного топлива, 33 % СМАД-1 и 34 % сульфонола (с противодавлением). Состав моющей жидкости определен на основе лабораторных исследований и практической проверкой на скважинах месторождения Тенгиз. Закачать в скважину 50-60 м3 2-3%-ного раствора товарного сульфонола. Объем определяется с учетом объема скважины. Промыть скважину в течение двух циклов с противодавлением на устье. Производительность агрегатов при отмывке следует поддерживать на уровне не менее 9 л/с. При выходе моющей жидкости на устье скважины второй раз желательно перейти на промывку чистой водой со сбором моющей жидкости в амбар. После выхода на устье чистой воды (по расчету) следует закачать еще 10-15 м3 чистой воды и отобрать пробу выходящей жидкости для контроля за механическими примесями. При содержании твердой фазы в воде не более 0,01 % прекратить промывку водой и приступить к замене воды на рабочую жидкость.

При содержании твердой фазы более 0,01 % продолжить промывку.

Композиция бромид цинка - бромид кальция перед приготовлением на ее основе жидкости должна быть очищена от твердой фазы. Для очистки композиции бромид цинка -бромид кальция следует использовать песочный фильтр типа Е0,3гл-0,7т или блок таких фильтров. В зимних условиях фильтры должны быть утеплены, а жидкость должна иметь температуру не менее 30 °С. Фильтр заполняется речным песком. Песок подбирается по гранулометрическому составу таким, чтобы обеспечить необходимую степень чистоты (содержание твердой фазы не более 0,010 %) и достаточно высокую производительность очистки. Размер частиц песка должен быть в пределах 0,2 — 0,4 мм.

Для получения жидкости необходимой плотности с наименьшей температурой кристаллизации следует разбавить исходный раствор пресной или пластовой водой. Если требуется получить как можно больший объем жидкости необходимой плотности и температура кристаллизации не столь

520

важна (например, летом), то разбавление производить раствором бромида кальция плотностью 1,70-1,75 г/см3.

Плотность жидкости после очистки и разбавления должна быть на 0,03 г/см3 больше, чем это требуется для обеспечения репрессии на пласт с учетом температурного расширения, т.е.

р0 = ptJ1 + pAt) + 0,03, (9.13)

где р, — плотность жидкости при среднескважинной темпе-

ратуре (эта плотность соответствует требуемой для обеспечения необходимой репрессии на пласт); р1 - коэффициент объемного расширения; At — разность между среднескважинной температурой и температурой замера плотности.

Поправка 0,03 введена с учетом дальнейшей обработки жидкости реагентами.

Расчет необходимого объема жидкости разбавления, требующейся для получения заданной плотности, производится по формуле (а также по диаграмме на рис. 9.5)

Уж = V""(p"" ~ Ртр' , (9.14)

Ртр — Рразб

где Уж, VHCX - объемы жидкостей соответственно разбавления и исходной; рисх, ртр, рраз6 — плотности жидкостей соответственно исходной, требующейся, разбавления.

Расчет плотности жидкости, полученной разбавлением исходной композиции, выполняется по формуле

Рпод = VhcxPhcx - Ужрж _ |Q_15j

Vhcx + V=k

Весь рабочий объем жидкости необходимо обработать фурфуролом из расчета 20 кг на 1 м3 основы — композиции бромид цинка - бромид кальция. Обработку проводят с помощью цементировочного агрегата в емкости хранения жидкости. Фурфурол сравнительно хорошо растворяется в композиции бромид цинка — бромид кальция. Однако для ускорения его растворения вводить его в раствор композиции желательно через смесительную воронку. После ввода расчетного количества фурфурола жидкость перемешивают 1 — 2 ч для равномерного распределения по всему объему. Затем следует ввести в жидкость ингибитор коррозии (ИКВ-4, КПИ-3, “Нефтехим-1”) из расчета 1 кг на 1 м3 жидкости. Ввод его осуществляется через смесительную воронку.

521

твердой фазы (прямой промывкой) с противодавлением на устье.

Перед закачкой раствора бромидов закачивается 2-3 м3 разделительной жидкости, приготовленной на основе окси-этилцеллюлозы (ОЭЦ), либо на основе карбоксиметилокси-этилцеллюлозы (КМОЭЦ). Для уменьшения зоны смешения раствора бромидов с водой производительность агрегатов не должна быть более 3 л/с. При приближении к концу операции замены на ЖБТФ усиливается контроль за выходом разделительной жидкости (визуально и по плотности). При появлении разделительной жидкости, смешанной с бромидами (повышение плотности до 1,30-1,35 г/см3), циркуляция направляется через агрегат, и жидкость зоны смешения собирается в отдельный мерник агрегата. Плотность собранной жидкости находится в пределах 1,55-1,75 г/см3. Жидкость используется для работы в скважинах с меньшей плотностью жидкости либо для последующей регенерации. Скважина промывается в течение 1 цикла с замером параметров жидкости (плотности, содержания твердой фазы, рН). Производится очистка жидкости от твердой фазы с использованием блока песочных фильтров. Необходимо довести содержание твердой фазы в жидкости до 0,01 %. Количество циклов промывки определяется этим требованием.

Эксплуатационная колонна перфорирована. После работы скребком в зоне установки пакера производится замена ИБР на жидкость без твердой фазы обратной промывкой. Закачивается 2 м3 разделительной вязкоупругой жидкости на основе ОЭЦ или КМОЭЦ, 6 м3 моющей жидкости, состоящей из 2 м3 СМАД-1 и 2 м3 дизельного топлива, а также 2 м3 сульфонола 30%-ной концентрации и 2 м3 разделительной жидкости на основе ОЭЦ или КМОЭЦ. Кроме того, закачивается требуемый объем жидкости без твердой фазы.

После выхода моющей и разделительной жидкостей и появления зоны смешения с рабочей жидкостью (плотность смеси 1,30-1,35 г/см3) прекращается закачка бромидов. В отдельный мерник агрегата собирается жидкость зоны смешения плотностью 1,50 — 2,75 г/см3. При появлении жидкости с рабочей плотностью восстанавливается круговая циркуляция и осуществляется промывка скважины в течение 1 цикла, контролируется плотность жидкости, содержание сульфидов и твердой фазы. Одновременно производится очистка жидкости от твердой фазы с использованием блока песочных фильтров. При появлении сульфидов в жидкости прекращается промывка, закрывается скважина, и циркуляция направ-

524

ляется через блок по сепарации и очистке жидкости от газа с факельной установкой. В дальнейшем промывка скважины проводится через этот блок.

Затем производится очистка жидкости от твердой фазы с доведением ее содержания до 0,01 %. Количество циклов промывки определяется этим требованием. В случае выявления незначительного поглощения жидкости последняя обрабатывается 4-5 % модифицированного крахмала с целью повысить условную вязкость до 80 — 100 с по воронке ЗБР-1.

В зимнее время жидкость хранится в емкостях, оснащенных змеевиками и электрокотлом для подогрева. Трубопроводы утепляются для предотвращения кристаллизации в них жидкости. При остановке циркуляции на длительное время в затрубное и трубное пространство закачивается такой объем жидкости плотностью 1,85-1,90 г/см3, чтобы обеспечить ее прохождение на глубину до 50 — 70 м. Это предотвратит кристаллизацию жидкости на устье скважины.

Композиция бромид цинка - бромид кальция (водный раствор) пожаровзрывобезопасна. Допускается подогрев чистой жидкости, не обработанной органическими реагентами (фурфуролом и ингибитором коррозии), на открытом огне. Разогрев жидкости, обработанной фурфуролом и ингибитором коррозии, производится с использованием горячей воды или пара.

При разогреве стальных бочек с композицией бромид цинка — бромид кальция не допускается слив кипящей жидкости во избежание вдыхания ее паров обслуживающим персоналом. Слив жидкости производится только после снижения ее температуры до 60 — 70 °С.

При работе с композицией бромид цинка - бромид кальция обслуживающий персонал должен применять защитные очки, резиновые перчатки, так как жидкость обладает раздражающим, прижигающим, некротизирующим действием на кожу и слизистые оболочки. При попадании растворов на кожные покровы немедленно промыть эти места обильной струей воды.

При попадании продукта внутрь необходимо вызвать рвоту, направить пострадавшего в медсанчасть.

 

Рис. 9.5. Диаграмма для определения необходимого объема жидкости разбавления композиции бромид цинка - бромид кальция:

t, • — жидкость разбавления — соответственно раствор бромида кальция плотностью 1,75 г/см3 и пластовая вода

Все работы по приготовлению жидкости проводятся при температуре жидкости 30 — 40 °С. В зимнее время необходимо емкости с жидкостью подогревать. Если жидкости приготовляли в нескольких емкостях, то после приготовления не-

522

обходимо усреднить жидкость по всему объему, &ля чего создается циркуляция через все емкости.

В случае необходимости для повышения вязкости жидкости используется модифицированный крахмал в количестве до 4 — 5 %. Другие виды крахмальных реагентов загущающее действие оказывают слабее.

Эксплуатационная колонна не перфорирована. После отмывки колонны производится замена воды на жидкость без

523

твердой фазы (прямой промывкой) с противодавлением на устье.

Перед закачкой раствора бромидов закачивается 2-3 м3 разделительной жидкости, приготовленной на основе окси-этилцеллюлозы (ОЭЦ), либо на основе карбоксиметилокси-этилцеллюлозы (КМОЭЦ). Для уменьшения зоны смешения раствора бромидов с водой производительность агрегатов не должна быть более 3 л/с. При приближении к концу операции замены на ЖБТФ усиливается контроль за выходом разделительной жидкости (визуально и по плотности). При появлении разделительной жидкости, смешанной с бромидами (повышение плотности до 1,30-1,35 г/см3), циркуляция направляется через агрегат, и жидкость зоны смешения собирается в отдельный мерник агрегата. Плотность собранной жидкости находится в пределах 1,55-1,75 г/см3. Жидкость используется для работы в скважинах с меньшей плотностью жидкости либо для последующей регенерации. Скважина промывается в течение 1 цикла с замером параметров жидкости (плотности, содержания твердой фазы, рН). Производится очистка жидкости от твердой фазы с использованием блока песочных фильтров. Необходимо довести содержание твердой фазы в жидкости до 0,01 %. Количество циклов промывки определяется этим требованием.

Эксплуатационная колонна перфорирована. После работы скребком в зоне установки пакера производится замена ИБР на жидкость без твердой фазы обратной промывкой. Закачивается 2 м3 разделительной вязкоупругой жидкости на основе ОЭЦ или КМОЭЦ, 6 м3 моющей жидкости, состоящей из 2 м3 СМАД-1 и 2 м3 дизельного топлива, а также 2 м3 сульфонола 30%-ной концентрации и 2 м3 разделительной жидкости на основе ОЭЦ или КМОЭЦ. Кроме того, закачивается требуемый объем жидкости без твердой фазы.

После выхода моющей и разделительной жидкостей и появления зоны смешения с рабочей жидкостью (плотность смеси 1,30-1,35 г/см3) прекращается закачка бромидов. В отдельный мерник агрегата собирается жидкость зоны смешения плотностью 1,50 — 2,75 г/см3. При появлении жидкости с рабочей плотностью восстанавливается круговая циркуляция и осуществляется промывка скважины в течение 1 цикла, контролируется плотность жидкости, содержание сульфидов и твердой фазы. Одновременно производится очистка жидкости от твердой фазы с использованием блока песочных фильтров. При появлении сульфидов в жидкости прекращается промывка, закрывается скважина, и циркуляция направ-

524

ляется через блок по сепарации и очистке жидкости от газа с факельной установкой. В дальнейшем промывка скважины проводится через этот блок.

Затем производится очистка жидкости от твердой фазы с доведением ее содержания до 0,01 %. Количество циклов промывки определяется этим требованием. В случае выявления незначительного поглощения жидкости последняя обрабатывается 4-5 % модифицированного крахмала с целью повысить условную вязкость до 80 — 100 с по воронке ЗБР-1.

В зимнее время жидкость хранится в емкостях, оснащенных змеевиками и электрокотлом для подогрева. Трубопроводы утепляются для предотвращения кристаллизации в них жидкости. При остановке циркуляции на длительное время в затрубное и трубное пространство закачивается такой объем жидкости плотностью 1,85-1,90 г/см3, чтобы обеспечить ее прохождение на глубину до 50 — 70 м. Это предотвратит кристаллизацию жидкости на устье скважины.

Композиция бромид цинка - бромид кальция (водный раствор) пожаровзрывобезопасна. Допускается подогрев чистой жидкости, не обработанной органическими реагентами (фурфуролом и ингибитором коррозии), на открытом огне. Разогрев жидкости, обработанной фурфуролом и ингибитором коррозии, производится с использованием горячей воды или пара.

При разогреве стальных бочек с композицией бромид цинка — бромид кальция не допускается слив кипящей жидкости во избежание вдыхания ее паров обслуживающим персоналом. Слив жидкости производится только после снижения ее температуры до 60 — 70 °С.

При работе с композицией бромид цинка - бромид кальция обслуживающий персонал должен применять защитные очки, резиновые перчатки, так как жидкость обладает раздражающим, прижигающим, некротизирующим действием на кожу и слизистые оболочки. При попадании растворов на кожные покровы немедленно промыть эти места обильной струей воды.

При попадании продукта внутрь необходимо вызвать рвоту, направить пострадавшего в медсанчасть.

Знакомства

для

настоящих

нефтяников

и

газовиков

Я:

Ищю:

от лет

до лет

В данной библиотеке представлены книги исключительно для личного ознакомления.
Запрещено любое копирование не для личного использования, а также с целью использования в коммерческих целях.
В случае претензий со стороны авторов книг/издательств обязуемся убрать указанные книги из перечня ознакомительной библиотеки.
Копирование, сохранение на жестком диске или иной способ сохранения произведений осуществляются пользователями на свой риск.
Басарыгин Ю.М., Будников В.Ф., Булатов А.И., Проселков Ю.М.
Технологические основы освоения и глушения нефтяных и газовых скважин

Глава № 9

Навигация

Аннотация-Оглавление-Список литературы

Глава 1 2 3 4 5 6 7 8 9 10

Скачать эту главу в формате PDF

Всё про нефть и газ / Литература(каталог книг)

по всем вопросам и предложениям Вы можете обращаться на neft-i-gaz@bk.ru Администрация сайта